algae blooms
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 70)

H-INDEX

20
(FIVE YEARS 5)

Harmful Algae ◽  
2022 ◽  
Vol 111 ◽  
pp. 102160
Author(s):  
Chintan B. Maniyar ◽  
Abhishek Kumar ◽  
Deepak R. Mishra

Author(s):  
Junqiu Wu ◽  
Yue Zhao ◽  
Ran Zhao ◽  
Liming Jia ◽  
Zimin Wei

To explore the eutrophication degree in the typical lakes and reservoirs of the northeast region of China, the bioavailability of dissolved organic phosphorus (DOP) of the lakes has been examined in this study. The laboratory incubation was carried out at 20 °C for 55 days and the concentrations of total dissolved phosphorus (TDP), dissolved reactive phosphorus (DRP), DOP and the microbial biomass have been detected. Results showed that, during the process of incubation, the concentrations of TDP and DRP were increased, whereas the DOP was decreased, which leads to the decreased mineralization rate. In addition, the changes of microbial biomass were fluctuant, but they had significantly positive effects on the concentration changes and mineralization rate of DOP (p < 0.05). The correlation analysis among the phosphate fractions showed that the TDP significantly promoted the DRP concentration, mineralization rate of DOP and the cumulative mineralization of DOP. The kinetics model was conducted to predict the further mineralization of DOP and to analyze the pollution degree of the eight lakes and reservoirs. Accordingly, the lakes with high DRP and TDP had worse water quality and are prone to algae blooms.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 894
Author(s):  
Dini Hu ◽  
John P. Giesy ◽  
Min Guo ◽  
Wai Kin Ung ◽  
Yijun Kong ◽  
...  

Compositions of microbial communities associated with blooms of algae in a storage reservoir in Macau, China were investigated between 2013 and 2016. Algae were enumerated by visible light microscopy. Profiles of organisms in water were examined by 16S rRNA sequences and viral metagenomics, based on next generation sequencing. Results of 16S rRNA sequencing indicated that majority of the identified organisms were bacteria closely related to Proteobacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes, and Actinobacteria. Metagenomics sequences demonstrated that the dominant virus was Phycodnavirus, accounting for 70% of the total population. Patterns of relative numbers of bacteria in the microbial community and their temporal changes were determined through alpha diversity indices, principal coordinates analysis (PCoA), relative abundance, and visualized by Venn diagrams. Ways in which the bacterial and viral communities are influenced by various water-related variables were elucidated based on redundancy analysis (RDA). Relationships of the relative numbers of bacteria with trophic status in a reservoir used for drinking water in Macau, provided insight into associations of Phycodnavirus and Proteobacteria with changes in blooms of algae.


Author(s):  
Rigel Castañeda-Quezada ◽  
Ernesto García-Mendoza ◽  
Rafael Ramírez-Mendoza ◽  
Javier Helenes ◽  
David Rivas ◽  
...  

Abstract Germination of cysts serves as inoculum for the proliferation of some dinoflagellates, and cyst abundance in sediments represents crucial information to understand and possibly predict Harmful Algae Blooms (HABs). Cyst distribution is related to the physical characteristics of the sediments and the hydrodynamics (circulation) of a particular region. In the northern Gulf of California (nGC) several Gymnodinium catenatum HABs have been recorded. However, the presence of resting cysts and the effect of hydrodynamics on their distribution in the nGC have not been investigated. This study evaluated cyst abundance, distribution and their relation to local circulation in surface sediments during two periods that coincided with a non-bloom year condition (July 2016) and after a major HAB registered in the nGC that occurred in January 2017. Also, a numerical ocean model was implemented to characterize the transport and relocation of cysts and sediments in the region. Gymnodinium catenatum cysts were heterogeneously distributed with some areas of high accumulation (as high as 158 cyst g−1, and 27% of total cyst registered). Cysts seemed to be transported in an eastward direction after deposition and accumulated in an extensive area that probably is the seedbed responsible for the initiation of HABs in the region. The nGC is a retention area of cysts (and sediments) that permit the formation of seedbeds that could be important for G. catenatum HAB development. Our results provide key information to understand G. catenatum ecology and specifically, to understand the geographic and temporal appearance of HABs in the nGC.


2021 ◽  
Vol 13 (21) ◽  
pp. 4479
Author(s):  
Miao Liu ◽  
Hong Ling ◽  
Dan Wu ◽  
Xiaomei Su ◽  
Zhigang Cao

Widespread harmful cyanobacterial bloom is one of the most pressing concerns in lakes and reservoirs, resulting in a lot of negative ecological consequences and threatening public health. Ocean color instruments with low spatial resolution have been used to monitor cyanobacterial bloom in large lakes; however, they cannot be applied to small water bodies well. Here, the Multi-Spectral Instrument (MSI) onboard Sentinel-2A and -2B and the Operational Landsat Imager (OLI) onboard Landsat-8 were employed to assemble the virtual constellation and to track spatial and seasonal variations in floating algae blooms from 2016 to 2020 in a small eutrophic plateau lake: Lake Xingyun in China. The floating algae index (FAI) was calculated using Rayleigh-corrected reflectance in the red, near-infrared, and short-wave infrared bands. The MSI-derived FAI had a similar pattern to the OLI-derived FAI, with a mean absolute percentage error of 19.98% and unbiased percentage difference of 17.05%. Then, an FAI threshold, 0.0693, was determined using bimodal histograms of FAI images for floating algae extraction. The floating algae had a higher occurrence in the northern region than the southern region in this lake, whilst the occurrence of floating algae in summer and autumn was higher than that in spring and winter. Such a spatial and seasonal pattern was related to the variability in air temperature, wind speed and direction, and nutrients. The climatological annual mean occurrence of floating algae from 2016 to 2020 in Lake Xingyun exhibited a significant decrease, which was related to decreases in nutrients, resulting from efficient ecological restoration by the local government. This research highlighted the application of OLI-MSI virtual constellation on monitoring floating algae in a small lake, providing a practical and theoretical reference to monitor aquatic environments in small water bodies.


2021 ◽  
Vol 42 (22) ◽  
pp. 8661-8674
Author(s):  
Liang Ma ◽  
Yan Liu ◽  
Bowen Zhang ◽  
Lingxing Lu ◽  
Guangshun Sun ◽  
...  

2021 ◽  
Vol 890 (1) ◽  
pp. 012004
Author(s):  
H Umasangaji ◽  
Y Ramili

Abstract This paper provides an overview of the upwelling processes and the controlling factors as an effort to reveal the characteristics and the intensities of upwelling events in several parts of the world. This review aimed at identifying the characteristics of upwelling and how the global climate controlling this physic phenomenon such as ENSO, IOD and Kelvin Wave. Several places in the Southeast Asia experienced high intensities of upwelling when El Nino events such as in South of Java, East Coast of Malaysia Peninsula and in Vietnam Coastal area. The results of this review found that area with the most intensive and productive upwelling in the world is South American waters and Banguela Upwelling System (BUS) in the African Coast. However, several other areas also show intensive and high productivity of upwelling, such as off the southern coast of Java Island in Indonesia and the Banda Sea and its surroundings. It is found that upwelling with stronger intensity can result in increase of mortality of certain organisms such as scallops. Additionally, increase of nutrients in a waters is often accompanied by an increase in several species of toxic algae that are harmful to the local fishery system (harmful algae blooms, HABs).


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Carlota Alejandre-Colomo ◽  
Ben Francis ◽  
Tomeu Viver ◽  
Jens Harder ◽  
Bernhard M. Fuchs ◽  
...  

AbstractWinogradskyella is a genus within the phylum Bacteroidetes with a clear marine origin. Most members of this genus have been found associated with marine animals and algae, but also with inorganic surfaces such as sand. In this study, we analyzed genomes of eleven species recently isolated from surface seawater samples from the North Sea during a single spring algae bloom. Corresponding metagenomes yielded a single Candidatus species for this genus. All species in culture, with the exception of W. ursingii, affiliated with a Winogradskyella lineage characterized by large genomes (~4.3 ± 0.4 Mb), with high complexity in their carbohydrate and protein degradation genes. Specifically, the polysaccharide utilization loci (PULs) were diverse within each individual strain, indicating large substrate versatility. Although present in the North Sea, the abundances of these strains were at, or below, the detection limit of the metagenomes. In contrast, the single species, classified as Candidatus W. atlantica, to which all North Sea MAGs belonged, affiliated with a lineage in which the cultivated representatives showed small genomes of ~3.0–3.5 Mb, with the MAGs having ~2.3 Mb. In Ca. W. atlantica, genome streamlining has apparently resulted in the loss of biosynthesis pathways for several amino acids including arginine, methionine, leucine and valine, and the PUL loci were reduced to a single one for utilizing laminarin. This as-yet uncultivated species seems to capitalize on sporadically abundant substrates that are released by algae blooms, mainly laminarin. We also suggest that this streamlined genome might be responsible for the lack of growth on plates for this Candidatus species, in contrast to growth of the less abundant but coexisting members of the genus.


2021 ◽  
Author(s):  
Luis H. Orellana ◽  
T. Ben Francis ◽  
Marcela Ferraro ◽  
Jan-Hendrik Hehemann ◽  
Bernhard M. Fuchs ◽  
...  

AbstractMarine algae annually sequester petagrams of carbon dioxide into polysaccharides, which are a central metabolic fuel for marine carbon cycling. Diatom microalgae produce sulfated polysaccharides containing methyl pentoses that are challenging to degrade for bacteria compared to other monomers, implicating these sugars as a potential carbon sink. Free-living bacteria occurring in phytoplankton blooms that specialise on consuming microalgal sugars, containing fucose and rhamnose remain unknown. Here, genomic and proteomic data indicate that small, coccoid, free-living Verrucomicrobiota specialise in fucose and rhamnose consumption during spring algal blooms in the North Sea. Verrucomicrobiota cell abundance was coupled with the algae bloom onset and accounted for up to 8% of the bacterioplankton. Glycoside hydrolases, sulfatases, and bacterial microcompartments, critical proteins for the consumption of fucosylated and sulfated polysaccharides, were actively expressed during consecutive spring bloom events. These specialised pathways were assigned to novel and discrete candidate species of the Akkermansiaceae and Puniceicoccaceae families, which we here describe as Candidatus Mariakkermansia forsetii and Candidatus Fucivorax forsetii. Moreover, our results suggest specialised metabolic pathways could determine the fate of complex polysaccharides consumed during algae blooms. Thus the sequestration of phytoplankton organic matter via methyl pentose sugars likely depend on the activity of specialised Verrucomicrobiota populations.


Sign in / Sign up

Export Citation Format

Share Document