scholarly journals Avoiding misinterpretation of climate change projections of fish catches

2019 ◽  
Vol 76 (6) ◽  
pp. 1390-1392 ◽  
Author(s):  
Manuel Barange

Abstract It is common to assume that climate change impacts on future fish catches, relative to current levels of catch, are directly proportional to changes in the capacity of the ocean to produce fish. However, this would only be the case if production was optimized, which is not the case, and continues to do so in the future, which we do not know. It is more appropriate to see changes in the ocean’s productive capacity as providing an upper limit to future fish catches, but whether these catches are an increase or a decrease from present catch levels depends on management decisions now and in the future, rather than on the ocean’s productive capacity alone. Disregarding the role of management in driving current and future catches is not only incorrect but it also removes any encouragement for management agencies to improve performance. It is concluded that climate change provides one of the most powerful arguments to improve fisheries—and environmental—management, and thus fisheries sustainability globally.

Author(s):  
X. Costoya ◽  
M. deCastro ◽  
D. Carvalho ◽  
Z. Feng ◽  
M. Gómez-Gesteira

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


2021 ◽  
Vol 254 ◽  
pp. 117248
Author(s):  
Urs Schenker ◽  
Julia Chardot ◽  
Karim Missoum ◽  
Alexey Vishtal ◽  
Julien Bras

2012 ◽  
Vol 55 (spe) ◽  
pp. 9-29 ◽  
Author(s):  
Eduardo Viola ◽  
Matías Franchini ◽  
Thaís Lemos Ribeiro

In the last five years, climate change has been established as a central civilizational driver of our time. As a result of this development, the most diversified social processes - as well as the fields of science which study them - have had their dynamics altered. In International Relations, this double challenge could be explained as follows: 1) in empirical terms, climate change imposes a deepening of cooperation levels on the international community, considering the global common character of the atmosphere; and 2) to International Relations as a discipline, climate change demands from the scientific community a conceptual review of the categories designed to approach the development of global climate governance. The goal of this article is to discuss in both conceptual and empirical terms the structure of global climate change governance, through an exploratory research, aiming at identifying the key elements that allow understanding its dynamics. To do so, we rely on the concept of climate powers. This discussion is grounded in the following framework: we now live in an international system under conservative hegemony that is unable to properly respond to the problems of interdependence, among which - and mainly -, the climate issue.


2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


2020 ◽  
Author(s):  
Lieke Anna Melsen ◽  
Björn Guse

Abstract. Hydrological models are useful tools to explore the hydrological impact of climate change. Many of these models require calibration. A frequently employed strategy is to calibrate the five parameters that were found to be most relevant as identified in a sensitivity analysis. However, parameter sensitivity varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity within a plausible climate change rate, and investigate if changes in sensitivity propagate into the calibration strategy. We employed three frequently used hydrological models (SAC, VIC, and HBV), and explored parameter sensitivity changes across 605 catchments in the United States by comparing a GCM-forced historical and future period. Consistent among all models is that the sensitivity of snow parameters decreases in the future. Which parameters increase in sensitivity is less consistent among the models. In 43 % to 49 % of the catchments, dependent on the model, at least one parameter changes in the future in the top-5 most sensitive parameters. The maximum number of changes in the parameter top-5 is two, in 2–4 % of the investigated catchments. The value of the parameters that enter the top-5 cannot easily be identified based on historical data, because the model is not yet sensitive to these parameters. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models on processes becoming relevant in future projections also calls for a strict evaluation of the adequacy of the model structure and the model parameters implemented therein.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>In the last two decades, different climate downscaling initiatives provided climate scenarios for Europe. The most recent initiative, CORDEX, provides Regional Climate Model (RCM) data for Europe with a spatial resolution of 12.5 km, while the previous initiative, ENSEMBLES, had a spatial resolution of 25 km. They are based on different emission scenarios, Representative Concentration Pathways (RCPs) and Special Report on Emission Scenarios (SRES) respectively.</p><p>A study carried out by Stanzel et al. (2018) explored the hydrological impact and discharge projections for the Danube basin upstream of Vienna when using either CORDEX and ENSEMBLES data. This basin covers an area of 101.810<sup></sup>km<sup>2</sup> with a mean annual discharge of 1923 m<sup>3</sup>/s at the basin outlet. The basin is dominated by the Alps, large gradients and is characterized by high annual precipitations sums which provides valuable water resources available along the basin. Hydropower therefore plays an important role and accounts for more than half of the installed power generating capacity for this area. The estimation of hydropower generation under climate change is an important task for planning the future electricity supply, also considering the on-going EU efforts and the “Green Deal” initiative.</p><p>Taking as input the results from Stanzel et al. (2018), we use transfer functions derived from historical discharge and hydropower generation data, to estimate potential changes for the future. The impact of climate change projections of ENSEMBLE and CORDEX in respect to hydropower generation for each basin within the study area is determined. In addition, an assessment of the impact on basins dominated by runoff river plants versus basins dominated by storage plants is considered.</p><p>The good correlation between discharge and hydropower generation found in the historical data suggests that discharge projection characteristics directly affect the future expected hydropower generation. Large uncertainties exist and stem from the ensembles of climate runs, but also from the potential operation modes of the (storage) hydropower plants in the future.</p><p> </p><p> </p><p>References:</p><p>Stanzel, P., Kling, H., 2018. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. J. Hydrol. 563, 987–999. https://doi.org/10.1016/j.jhydrol.2018.06.057</p><p> </p>


2011 ◽  
Vol 2 (2-3) ◽  
pp. 106-122 ◽  
Author(s):  
Christof Schneider ◽  
Martina Flörke ◽  
Gertjan Geerling ◽  
Harm Duel ◽  
Mateusz Grygoruk ◽  
...  

In the future, climate change may severely alter flood patterns over large regional scales. Consequently, besides other anthropogenic factors, climate change represents a potential threat to river ecosystems. The aim of this study is to evaluate the effect of climate change on floodplain inundation for important floodplain wetlands in Europe and to place these results in an ecological context. This work is performed within the Water Scenarios for Europe and Neighbouring States (SCENES) project considering three different climate change projections for the 2050s. The global scale hydrological model WaterGAP is applied to simulate current and future river discharges that are then used to: (i) estimate bankfull flow conditions, (ii) determine three different inundation parameters, and (iii) evaluate the hydrological consequences and their relation to ecology. Results of this study indicate that in snow-affected catchments (e.g. in Central and Eastern Europe) inundation may appear earlier in the year. Duration and volume of inundation are expected to decrease. This will lead to a reduction in habitat for fish, vertebrates, water birds and floodplain-specific vegetation causing a loss in biodiversity, floodplain productivity and fish production. Contradictory results occur in Spain, France, Southern England and the Benelux countries. This reflects the uncertainties of current climate modelling for specific seasons.


2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


Author(s):  
James Meadowcroft

These two books draw attention to the role of Canada's oil-producing provinces—“petro-provinces” for Angela Carter and “carbon provinces” for Douglas Macdonald—in the politics of energy, environment and climate change, but they do so in very different ways. Carter's volume examines the erosion of environmental protections in the oil-rich provinces of Alberta, Saskatchewan, and Newfoundland and Labrador, while Macdonald's focuses on the way interest-based conflicts rooted in regional energy political economies have driven federal/provincial dynamics around energy and climate policy. Both books are well written (not always a given in academic publishing), and they should interest anyone concerned with the politics of energy, environment and climate change in Canada.


Sign in / Sign up

Export Citation Format

Share Document