Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment

2017 ◽  
Vol 22 (2) ◽  
pp. 248-302 ◽  
Author(s):  
Saeid Shahedi ◽  
Mehdi Mohammadimehr

In this paper, the nonlinear dynamic stability analysis of sandwich beam including AL-foam flexible core and carbon nanotubes-reinforced composite face sheets subjected to axial periodic load are investigated by using generalized differential quadrature method. The flexible core of sandwich beam is made of Aluminum alloy foam with variable mechanical properties in the thickness direction. With considering the high-order geometrical nonlinearity in the core and face sheets, the high-order sandwich panel theory and modified couple stress theory are employed for AL-foam flexible core and face sheets, respectively. The governing nonlinear partial differential equations of dynamic stability are derived from the Hamilton’s principle and then discretized by using generalized differential quadrature method to convert them into a linear system of Mathieu–Hill equations. These formulations lead to nine partial differential equations which are coupled in axial and transverse deformations. The boundaries of the instability region are achieved by Bolotin’s method and are illustrated in the dimensionless nonlinear excitation frequency (Ω NL) and excitation frequency ratio (Ω NL/Ω L) to load amplitude plane. A parametric study is carried out to investigate the influence of some important parameters such as slenderness ratio, face sheet thickness, temperature rise, carbon nanotube volume fraction, static load factor, coefficients of Pasternak foundation, and end supports on the nonlinear dynamic instability characteristics of AL-foam core sandwich beam. The numerical results show that with temperature increasing, the nonlinear excitation frequency (Ω NL) and width of corresponding unstable zone decrease, but dynamic frequency ratio (Ω NL/Ω L) and associated unstable region increase. With an increase in the application of sandwich structures for compressible core in advanced industries such as spacecraft, high-speed aircraft, naval vessels, transportation, and automobiles, a further interest in the problem-involving dynamic instability of structures has resulted. Because of their applications, sandwich structures are frequently exposed to periodic axial compressive forces and so the dynamic instability has been a very important topic in structural dynamics and is of practical importance in different engineering industries.

1992 ◽  
Vol 118 (5) ◽  
pp. 1026-1043 ◽  
Author(s):  
Y. Frostig ◽  
M. Baruch ◽  
O. Vilnay ◽  
I. Sheinman

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Rosalin Sahoo ◽  
B. N. Singh

A structure with periodic dynamic load may lead to dynamic instability due to parametric resonance. In the present work, the dynamic stability analysis of laminated composite and sandwich plate due to in-plane periodic loads is studied based on recently developed inverse trigonometric zigzag theory (ITZZT). Transverse shear stress continuity at layer interfaces along with traction-free boundary conditions on the plate surfaces is satisfied by the model obviating the need of shear correction factor. An efficient C0 continuous, eight noded isoparametric element with seven field variable is employed for the dynamic stability analysis of laminated composite and sandwich plates. The boundaries of instability regions are determined using Bolotin's approach and the first instability zone is presented either in the nondimensional load amplitude–excitation frequency plane or load amplitude–load frequency plane. The influences of various parameters such as degrees of orthotropy, span-thickness ratios, boundary conditions, static load factors, and thickness ratios on the dynamic instability regions (DIRs) are studied by solving a number of problems. The evaluated results are validated with the available results in the literature based on different deformation theories. The efficiency of the present model is ascertained by the improved accuracy of predicted results at the cost of less computational involvement.


2016 ◽  
Vol 20 (2) ◽  
pp. 219-248 ◽  
Author(s):  
S Jedari Salami

Free vibration analysis of a sandwich beam with soft core and carbon nanotube reinforced composite face sheets, hitherto not reported in the literature, based on extended high-order sandwich panel theory is presented. Distribution of fibers through the thickness of the face sheets could be uniform or functionally graded. In this theory, the face sheets follow the first-order shear deformation theory. Besides, the two-dimensional elasticity is used for the core. The field equations are derived via the Ritz-based solution which is suitable for any essential boundary conditions. Chebyshev polynomials multiplying boundary R-functions are used as admissible functions and evidence of their good performance is given. A detailed parametric study is conducted to study the effects of nanotube volume fraction and their distribution pattern, core-to-face sheet thickness ratio, and boundary conditions on the natural frequencies and mode shapes of sandwich beams with functionally graded carbon nanotube reinforced composite face sheets and soft cores. Since the extended high-order sandwich panel theory can be used with any combinations of core and face sheets and not only the soft cores that the other theories demand, the results for the same beam with functionally graded carbon nanotube reinforced composite face sheets and stiff core are also provided for comparison. It is concluded that the sandwich beam with X and V distribution figures of face sheets, no matter what the boundary conditions, has higher vibration performance than the beam with UD-CNTRC face sheets.


2008 ◽  
Vol 08 (01) ◽  
pp. 61-76 ◽  
Author(s):  
S. K. SAHU ◽  
A. V. ASHA

The present study deals with the dynamic stability of laminated composite pre-twisted cantilever panels. The effects of various parameters on the principal instability regions are studied using Bolotin's approach and finite element method. The first-order shear deformation theory is used to model the twisted curved panels, considering the effects of transverse shear deformation and rotary inertia. The results on the dynamic stability studies of the laminated composite pre-twisted panels suggest that the onset of instability occurs earlier and the width of dynamic instability regions increase with introduction of twist in the panel. The instability occurs later for square than rectangular twisted panels. The onset of instability occurs later for pre-twisted cylindrical panels than the flat panels due to addition of curvature. However, the spherical pre-twisted panels show small increase of nondimensional excitation frequency.


Author(s):  
M Mohammadimehr ◽  
S Shahedi ◽  
B Rousta Navi

In this paper, the magneto-mechanical nonlinear vibration behavior of rectangular functionally graded carbon nanotube reinforced composite (FG-CNTRC) sandwich Timoshenko beam based on modified couple stress theory (MCST) is investigated by the generalized differential quadrature method. The FG-CNTRC sandwich beam consists of two FG-CNTRC face sheets and homogenous core subjected to longitudinal magnetic field. In the FG-CNTRC face sheets, carbon nanotubes are disseminated in different patterns as uniform distribution, FG-X, FG-V, and FG-O. Based on von Kármán geometric nonlinearity, the nonlinear governing equations are derived by the Hamilton’s principle. Accuracy and convergence of this study are validated by comparing the numerical results with those found in literature. Various parameters effects are examined on the nonlinear 1st frequency of the sandwich beam. The results reveal that composition of the CNTRC face sheets and homogenous core in sandwich beam can be achieved remarkable stiffness in comparison to only CNTRC beam or only homogenous beam. For achieving the highest stiffness of FG-CNTRC sandwich beam, the value of thickness ratio is obtained about 0.34 and 0.27 in the presence and absence of Pasternak foundation, respectively. Moreover, the linear and nonlinear 1st frequencies increase with an increase in the magnetic field for all of CNT distribution types of sandwich beam and different boundary conditions whereas the frequency ratio decreases. Also the highest and lowest nonlinear 1st frequencies are corresponding to FG-A and FG-V distributions of CNT in face sheets, respectively.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 106
Author(s):  
Behrooz Keshtegar ◽  
Reza Kolahchi ◽  
Arameh Eyvazian ◽  
Nguyen-Thoi Trung

The objective of this innovative research is assessment of dynamic stability for a hybrid nanocomposite polymer beam. The considered beam formed by multiphase nanocomposite, including polymer–carbon nanotubes (CNTs)–carbon fibers (CFs). Hence, as to compute the effective material characteristics related to multiphase nanocomposite layers, the Halpin–Tsai model, as well as micromechanics equations are employed. To model the structure realistically, exponential shear deformation beam theory (ESDBT) is applied and using energy methods, governing equations are achieved. Moreover, differential quadrature method (DQM) as well as Bolotin procedures are used for solving the obtained governing equations and the dynamic instability region (DIR) relative to the beam is determined. To extend this novel research, various parameters pinpointing the influences of CNT volume fraction, CFs volume percent, boundary edges as well as the structure’s geometric variables on the dynamic behavior of the beam are presented. The results were validated with the theoretical and experimental results of other published papers. The outcomes reveal that increment of volume fraction of CNT is able to shift DIR to more amounts of frequency. Further, rise of carbon fibers volume percent leads to increase the excitation frequency of this structure.


Sign in / Sign up

Export Citation Format

Share Document