scholarly journals Implication of Long-Term Terracing Watershed Development on Soil Macronutrients and Crop Production in Maybar Subwatershed, South Wello Zone, Ethiopia

2021 ◽  
Vol 14 ◽  
pp. 117862212110042
Author(s):  
Tilahun Taye ◽  
Awdenegest Moges ◽  
Alemayehu Muluneh ◽  
Muluken Lebay ◽  
Wudu Abiye

Long-term watershed management in Ethiopia was evaluated in various agro-ecologies starting in the 1980s. Our research was carried out to investigate the effects of long-term watershed management on soil macronutrient status and crop production in the Maybar subwatershed terrace positioning system, which has a long-term data set on various aspects, such as hydroclimatology, agriculture, and social studies. Crop yield data were collected from 40 fixed plots of that data set, and soil samples were collected by topo-sequencing of the catchment from the cultivation field based on different terrace position plot arrangements. The results showed higher crop yield and production of biomass in the upper section or deposition zone of soil and water conservation structure than below the structure or loss zone, but did not vary significantly from the annual production potential. The annual production of cereals was marginally decreased, but not pulse crops, reducing the wheat harvest production from the middle to the loss zone (23.8%) rather than the deposition zone to middle portion of the terrace (8.0%). In comparison, to increase the slope position of the terrace, the redaction percentage of pulse crops (field pea and lentil) is greater, because in the first terrace location (upper to middle) and in the second terrace, the output capacity of field pea was reduced by 22.4%. The condition of soil fertility between the 2 consecutive systems for soil and water protection differed from the upper to the lower land positions. Improvement in soil chemical and physical properties relatively increased toward the upper land position. Soil organic matter, available phosphorus, bulk density, and soil moisture content were significantly affected by soil and water conservation structures ( P ⩽ .05). Long-term terrace growth typically has a positive effect on improvements in onsite soil resources and the capacity for crop production. It therefore has a beneficial impact on onsite natural resources, such as enhancing soil macronutrients and increasing productivity in crop yields.

2019 ◽  
Vol 44 (2) ◽  
pp. 251-266 ◽  
Author(s):  
Hailu Kendie Addis ◽  
Atikilt Abera ◽  
Legese Abebaw

Soil and water conservation (SWC) interventions are needed to control rainfall-driven erosion, and profitability of SWC measures at the sub-catchment scale emerges as the principal reason for their adoption. This study carried out a cost–benefit analysis of SWC measures in mountainous agricultural catchments. Physical data were obtained through field measurements of discharge, sediment and nutrient loss at the sub-catchment scale with and without SWC measures. The major cost benefits of various measures implemented in the study area were quantified using net present value (NPV), and direct market prices were employed in valuing the cost of items required for crop production. The results revealed that sediment loss decreased by 8.78 Mg ha−1 y−1 (46.8%) due to SWC measures, and the cost of production inputs, such as fertilizer (urea) and lime, was reduced by $17.97 ha−1 y−1 and $3.63 ha−1 y−1, respectively. Furthermore, crop yield was enhanced by 13% for teff, 19.4% for sorghum and 19.42% for chickpeas, which is equivalent to economic returns of $102, $96.9 and $140.25 ha−1 y−1, respectively. The total discounted cost of SWC interventions was about $331.74. This includes establishment costs, maintenance costs, input costs and the costs resulting from lost productive land. In sum, the total discounted benefits of SWC measures were the enhancement of crop production, a reduction in lime requirement and a reduction in the loss of total nitrogen and sediment, estimated at about $809.42. Hence, it is possible to deduce that SWC measures reduced nutrient depletion and greatly improved crop yield with a NPV of $477.68 ha−1. The results strongly suggest that SWC measures in the study sub-catchment, as well as in nearby areas with a similar indigenous SWC adoption strategy, topographic conditions and agroclimatic characteristics, should be maintained.


2014 ◽  
Vol 4 ◽  
Author(s):  
Ildefons Pla

Increased human influences on soils frequently result in widespread land and soil degradation. The processes of soil and water degradation are closely linked, as unfavourable changes in the hydrological processes affect soil water regimes. In the last 15-20 years there has been increased interest in human-induced climate change, associated with increased atmospheric concentrations of greenhouse gases. Most of the present and future problems of land and soil degradation, water supply and natural disasters are mainly attributed to these climate changes. At the same time, and probably related to it, there has been a change in the focus of research on soil and water conservation. From the late 1960s there was an increasing interest in stimulating studies related to soil and water conservation. This was a great change from the previous emphasis on more static studies of the characteristics of the soil resource, mainly for soil classification and mapping, and for land evaluation related to agricultural and other uses. This situation was due to the increasing evidence of the global problems of land, soil and water degradation, and their effects on food production and the environment. Particular attention was paid to the processes of soil and water degradation in relation to their use and management for agricultural purposes. These efforts led to the development of models and evaluation systems mainly using empirical approaches. Later studies demonstrated the limitations of the generalized universal use of these empirical approaches. Concurrently there was an increase in related organizations, conventions, congresses and conferences associated with the renewed interest on soil and water conservation. A global assessment of human-induced soil degradation (GLASOD) demonstrated the paucity, difficult accessibility and poor quality of basic information. This information, however, is essential for adequate planning and effective application of practices to prevent soil and water degradation. The most recent conventions and programs at international and regional levels are generally based on re-interpretations, and a different processing method or representation of old information using “new” terminology. In other cases, new information has been mostly generated through indirect or remote sensing deductions, usually without adequate ground-truthing. The decreasing public or private support for more integrated interdisciplinary studies and the compulsion to quickly publish papers has resulted in a very specialized and isolated consideration of different aspects related to the degradation of soil functions. This frequently results in over-simplifications, failures and even contradictions in the proposed strategies to control soil degradation. Currently we have reached quasi-stagnation in soil conservation research and a new series of soil conservation terms (soil quality, desertification, tillage erosion) and clichés (“C sequestration”, “no-tillage”) have been introduced. These are derived from different interests, but generally they are very empirical approaches without a strong scientific basis. However, they attract increased attention from organizations setting policies and providing funds for research in soil and water conservation, and as a consequence many research activities in the last 20 years have been concentrated in such topics. Regretfully, these approaches have very limited accuracy and are insufficient for developing adequate policies for land use and management. Climate, soil and socio-economic conditions differ greatly from one location to another and are changing continuously. There cannot therefore be simple universal prescriptions regarding practices of sustainable soil management for crop production and environmental protection or for mitigation of the greenhouse effect by “C sequestration” in soils. The adequate selection of those sustainable practices must be based on research with a broader vision of soil conservation, where all the system components and their interactions are considered and understood with a far-sighted approach, to ensure that short term gains in one aspect or location do not induce long-term losses in other aspects or elsewhere. Research needs to be directed to better the understanding of the processes and reactions in soils related to chemical recycling and water balance over a range of spatial and temporal scales, with the common objective of improving crop production and environmental protection. Lasting solutions will only be found if adequately trained researchers in soil science and hydrology, who recognize the complexity of the problems, develop appropriate strategies.


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


2016 ◽  
Vol 189 ◽  
pp. 59-67 ◽  
Author(s):  
Jorge Lampurlanés ◽  
Daniel Plaza-Bonilla ◽  
Jorge Álvaro-Fuentes ◽  
Carlos Cantero-Martínez

Sign in / Sign up

Export Citation Format

Share Document