scholarly journals Antioxidative and Metabolic Effects of Lactobacillus plantarum, Inulin, and Their Synbiotic on the Hypothalamus and Serum of Healthy Rats

2020 ◽  
Vol 13 ◽  
pp. 117863882092509
Author(s):  
Elaheh-Sadat Hosseinifard ◽  
Khadijeh Bavafa-Valenlia ◽  
Maryam Saghafi-Asl ◽  
Mohammad Morshedi

Nowadays, much attention has been paid to the link between gut microbiota and brain. The beneficial metabolic effects of probiotics and prebiotics in several diseases such as diabetes and obesity have been reported. However, studies bridging the association of gut microbiome with brain function in healthy states are rare. Therefore, it was hypothesized that the administration of Lactobacillus plantarum ( L plantarum) and inulin may affect serum and hypothalamic metabolic parameters as well as oxidative markers in healthy male rats. Daily L plantarum (107 CFU/mL) and inulin (5% of daily food weight) or their combination (synbiotic) was given to healthy rats. Then, serum and hypothalamic levels of leptin, insulin, and oxidative markers were measured. Administration of synbiotic for 8 weeks led to significant changes in serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, low-density lipoprotein/high-density lipoprotein ratio, triglyceride, and total cholesterol. The intake of synbiotic also resulted in a significantly reduced hypothalamic level of malondialdehyde and increased hypothalamic superoxide dismutase (SOD). Also, L plantarum could significantly increase hypothalamic SOD level. Furthermore, synbiotic administration insignificantly increased the hypothalamic and serum levels of insulin and leptin. These findings suggest that the synbiotic could significantly improve oxidative markers and lipid profile in healthy rats. Therefore, simultaneous intake of L plantarum and inulin appears to be more effective in the amelioration of metabolic and oxidative parameters.

Author(s):  
J. H. Osorio ◽  
J. D. Flores

Objective: To compare serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and high density lipoprotein cholesterol between broilers and laying hens. Materials and Methods: the present is a cross study, descriptive and analytic. Data was analyzed using simple ANOVA, the program Statgraphics Plus 5.1 was used. The study was performed at Universidad de Caldas in Manizales (Colombia). After fasting, blood from 30 broilers (Cobb 500 line) of 35-day-old and 40 laying hens (Hy-Line W-36 line) of 26-weeks-old. Serum levels of triglycerides, total cholesterol, low density lipoprotein cholesterol and high density lipoprotein cholesterol was measured by enzymatic colorimetric methods, direct method (detergent + N,Nbis (4-sulfobutyl)-m-toluidine) was used for the lipoprotein cholesterol. Results: Between broilers (Cobb 500 line) and (laying hens (Hy-line W-36 line) was significant difference in serum levels of triglycerides and in serum levels of high density lipoprotein cholesterol (P <0.05); serum levels of total cholesterol and serum levels of low density lipoprotein cholesterol, no differences were found (P> 0.05) Conclusions: Despite differences in gender, age, and production system among broilers Cobb 500 line and laying hens Hy-Line W-36, no differences were found between serum total cholesterol and low density lipoprotein cholesterol.


2005 ◽  
Vol 62 (11) ◽  
pp. 811-819
Author(s):  
Aleksandra Jovelic ◽  
Goran Radjen ◽  
Stojan Jovelic ◽  
Marica Markovic

Background/Aim. C-reactive protein is an independent predictor of the risk of cardiovascular events and diabetes mellitus in apparently healthy men. The relationship between C-reactive protein and the features of metabolic syndrome has not been fully elucidated. To assess the cross-sectional relationship between C-reactive protein and the features of metabolic syndrome in healthy people. Methods. We studied 161 military pilots (agee, 40?6 years) free of cardiovascular disease, diabetes mellitus and active inflammation on their regular annual medical control. Age, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides, fasting glucose, glycosylated hemoglobin, blood pressure, smoking habit, waist circumference and body mass index were evaluated. Plasma C-reactive protein was measured by the immunonephelometry (Dade Behring) method. Metabolic syndrome was defined according to the National Cholesterol Education Program Expert Panel. Results. The mean C-reactive protein concentrations in the subjects grouped according to the presence of 0, 1, 2 and 3 or more features of the metabolic syndrome were 1.11, 1.89, 1.72 and 2.22 mg/L, respectively (p = 0.023) with a statistically, significant difference between those with 3, and without metabolic syndrome (p = 0.01). In the simple regression analyses C-reactive protein did not correlate with the total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, body mass index and blood pressure (p > 0.05). In the multiple regression analysis, waist circumference (? = 0.411, p = 0.000), triglycerides to high density lipoprotein cholesterol ratio (? = 0.774, p = 0.000), smoking habit (? = 0.236, p = 0.003) and triglycerides (? = 0.471, p = 0.027) were independent predictors of C-reactive protein. Conclusions. Our results suggested a cross-sectional independent correlation between the examined cardiovascular risk factors as the predominant features of metabolic syndrome and C-reactive protein in the group of apparently healthy subjects. The lack of correlation of C-reactive protein with the total cholesterol and low density lipoprotein cholesterol in our study may suggest their different role in the process of atherosclerosis and the possibility to determine C-reactive protein in order to identify high-risk subjects not identified with cholesterol screening.


Sign in / Sign up

Export Citation Format

Share Document