scholarly journals Vascular Endothelial Repair and the Influence of Circulating Antiplatelet Drugs in a Carotid Coil Model

2021 ◽  
Vol 13 ◽  
pp. 117957352110117
Author(s):  
Norihito Fukawa ◽  
Takahiro Ueda ◽  
Tomofumi Ogoshi ◽  
Yasuhide Kitazawa ◽  
Jun Takahashi

Background: Clinicians may choose to administer antiplatelet medications to patients with cerebral aneurysms following endovascular coiling to prevent thrombus formation and vascular occlusion, if they fear a thrombus will form on the platinum wire where it diverges into the vessel from the aneurysm sac. However, the mechanism by which vascular endothelial cells repair a vessel in the living body in the event of a coil deviation and the effects of antiplatelet drugs on these cells have not been fully elucidated. We aimed to investigate the association between endothelial progenitor cells (EPCs) and endothelium formation at the surface of the platinum coils deployed in the carotid artery of rats, and to determine the effects of different antiplatelet drugs on this process. Subjects and Methods: We established an experimental model using normal and diabetic rats at 12 months of age. The diabetic rats were assigned to 4 different diet groups, distinguished by whether they were fed plain rat feed, or the same feed supplemented by 1 of 3 antiplatelet drugs (cilostazol, aspirin, or clopidogrel: all 0.1%) for 2 weeks, and the carotid artery was perforated by an embolization coil (“carotid coil model”). We monitored the process by which vascular endothelial cells formed the new endothelium on the surface of the coil by sampling and evaluating the region at 1, 2, and 4 weeks after placement. This repair process was also compared among 3 groups treated with different antiplatelet drugs (i.e. aspirin, clopidogrel, and cilostazol). One-way analysis of variance tests were performed to evaluate the differences in vascular thickness between groups, and P < .05 was considered statistically significant. Results: The diabetic rats showed delayed neoendothelialization and marked intimal hyperplasia. Cilostazol and clopidogrel effectively counteracted this delayed endothelial repair process. Flk1 immunostaining revealed greater expression in the diabetic rats administered cilostazol, second only to normal rats, suggesting that this agent acted to recruit EPCs. Conclusion: Neoendothelialization is delayed when vascular endothelial cells fail to function normally, which consequently leads to the formation of hyperplastic tissue. Cilostazol may remedy this dysfunction by recruiting EPCs to the site of injury.

2016 ◽  
Vol 310 (11) ◽  
pp. L1185-L1198 ◽  
Author(s):  
Toshio Suzuki ◽  
Yuji Tada ◽  
Rintaro Nishimura ◽  
Takeshi Kawasaki ◽  
Ayumi Sekine ◽  
...  

Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c- kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.


2011 ◽  
Vol 92 (11) ◽  
pp. 1208-1214 ◽  
Author(s):  
Xiaoming Pan ◽  
Wujun Xue ◽  
Yang Li ◽  
Xinshun Feng ◽  
Xiaohui Tian ◽  
...  

1999 ◽  
Vol 276 (3) ◽  
pp. H1091-H1097 ◽  
Author(s):  
Christina M. Satterwhite ◽  
Angela M. Farrelly ◽  
Michael E. Bradley

Endothelial cells express receptors for ATP and UTP, and both UTP and ATP elicit endothelial release of vasoactive compounds such as prostacyclin and nitric oxide; however, the distinction between purine and pyrimidine nucleotide signaling is not known. We hypothesized that UTP plays a more important role in endothelial mitogenesis and chemotaxis than does ATP and that UTP is angiogenic. In cultured endothelial cells from guinea pig cardiac vasculature (CEC), both UTP and vascular endothelial growth factor (VEGF) were significant mitogenic and chemotactic factors; in contrast, ATP demonstrated no significant chemotaxis in CEC. In chick chorioallantoic membranes (CAM), UTP and VEGF treatments produced statistically significant increases in CAM vascularity compared with controls. These findings are the first evidence of chemotactic or angiogenic effects of pyrimidines; they suggest a role for pyrimidine nucleotides that is distinct from those assumed by purine nucleotides and provide for the possibility that UTP serves as an extracellular signal for processes such as endothelial repair and angiogenesis.


1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 487-P
Author(s):  
MUNENORI HIROMURA ◽  
YUSAKU MORI ◽  
MASAKAZU KOSHIBU ◽  
HIDEKI KUSHIMA ◽  
KYOKO KOHASHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document