Enhancement of steady state performance of hydrodynamic journal bearing using chevron-shaped surface texture

Author(s):  
Sanjay Sharma ◽  
Gourav Jamwal ◽  
Rajeev K Awasthi

In the present study, the optimum design parameters of chevron-shaped surface texture have been determined for the steady state performance enhancement of a hydrodynamic journal bearing. The fluid flow governing Reynolds equation has been solved using the finite element method, assuming iso-viscous and Newtonian fluid to obtain the static performance characteristics of textured hydrodynamic journal bearing. Different texture depths, areas and distributions have been numerically simulated and a set of optimum texture parameters has been determined based on the maximum performance enhancement ratio. The numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure build-up region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios. The performance enhancement ratio, which is the ratio of load-carrying capacity to coefficient of friction is found to be maximum at texture depth of 0.4, k = 0.3, textured zone located in the increasing pressure region and eccentricity ratio of 0.2.

2019 ◽  
Vol 71 (9) ◽  
pp. 1055-1063 ◽  
Author(s):  
Sanjay Sharma ◽  
Gourav Jamwal ◽  
R.K. Awasthi

Purpose The purpose of this paper is to provide the various steady state parameters of hydrodynamic journal bearings have been determined to get maximum performance enhancement ratio. For this, the bearings inner surface is textured with triangular shape with different texture depths and a number of textures in pressure increasing region. The textured region acts as a lubricant reservoir, which provides additional film-thickness and reduce friction. Therefore, enhance the overall performance of bearing. Design/methodology/approach In the present study, the effect of triangular shaped texture on the static performance characteristics of a hydrodynamic journal bearing has been studied. Different values of texture depths and a number of textures have been numerically simulated in pressure developing region. The static performance characteristics have been calculated by solving the fluid flow governing Reynolds equation using the finite element method, assuming iso-viscous Newtonian fluid. The performance enhancement ratio, which is the ratio of load carrying capacity (LCC) to the coefficient of friction (COF) has been calculated from results to finalized optimum design parameters. Findings The paper provides numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure increasing region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios and texture depth. The performance enhancement ratio, which is the ratio of LCC to the COF is found to be a maximum value of 2.198 at texture depth of 1.5, eccentricity ratio of 0.2 and the textured region located in the increasing pressure region. Research limitations/implications The present study is based on a numerical based research approach, which has its limitations. So, researchers are encouraged to investigate the same work experimentally. Practical implications The paper includes implications to be beneficial for designers for designing better hydrodynamic journal bearings. Originality/value For the triangular shaped texture, considered in the present study, the optimum values of texture depth and texture distribution region have also been determined. While designing, designers should focus on those values of texture depth, texture region and a number of textures, which give the maximum value of performance enhancement ratio, which represents maximum LCC at the lowest value of the COF.


1989 ◽  
Vol 111 (3) ◽  
pp. 459-467 ◽  
Author(s):  
P. S. Leung ◽  
I. A. Craighead ◽  
T. S. Wilkinson

With recent developments in N. C. manufacturing processes it is relatively straightforward to produce a journal bearing with spherical surfaces. Such a bearing offers two main advantages over a conventional bearing: it can tolerate much larger misalignment and it can resist axial forces. In this paper, the steady state performance of a spherical journal bearing is studied by using a finite bearing theory. The dynamic characteristics of the bearing are represented by eight displacement and velocity force coefficients and the boundary of bearing stability is determined. The effect of superlaminar flow upon the bearing performance is also studied, and typical bearing design charts are provided. In comparison, the behavior of the spherical journal bearing is found to be similar to that of an equivalent cylindrical bearing.


Author(s):  
M Malik

A new type of gas-lubricated floating-ring journal bearing in which the fixed bearing and the ring are both porous, has been conceived and analysed, theoretically, for the steady state characteristics. Bearing characteristics are presented against two design parameters, namely, clearances ratio and permeability parameter. The comparison of these characteristics with those of externally-pressurized plain porous journal bearings shows that the new bearing represents, with its steady state performance, a distinctly advanced bearing design.


2004 ◽  
Vol 47 (4) ◽  
pp. 480-488 ◽  
Author(s):  
Keith Brockwell ◽  
Waldemar Dmochowski ◽  
Scan Decamillo

Lubricants ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 97 ◽  
Author(s):  
Mohammad Tauviqirrahman ◽  
J. Jamari ◽  
Bayu Siswo Wibowo ◽  
Hilmy Muhammad Fauzan ◽  
M. Muchammad

The drive to maintain the environmental sustainability and save the global energy consumption is urgent, making every powertrain system component a candidate to enhance efficiency. In this work, the combined effects of the slip boundary and textured surface in hydrodynamic journal bearing as one of the critical components in industrial powertrain and engine systems are assessed using a multiphase computational fluid dynamic analysis that allows for phase change in a cavitation process and arbitrary textured geometry. The texture studied consists of regularly spaced rectangular dimples through two-dimensional (infinitely long) journal bearing. The modified Navier–slip model is employed to describe the slip boundary condition. A systematic comparison is made for various textured configurations varying the texture depth and the length of the texturing zone with respect to the performance of a smooth (untextured) bearing for several eccentricity ratios. The effectiveness of the texture with or without slip at enhancing the load support over a corresponding smooth bearing is investigated with the parameters. The detrimental or beneficial effect of surface texturing as well as the slip promotion is explained in terms of the mechanisms of pressure generation for several eccentricity ratios. The results of the present work indicate that journal bearing textured by a proper texturing zone and dimple depth are characterized by substantial load support levels. However, in the range of high eccentricity ratios, the promotion of texturing and slip can significantly degrade the performance of the load support.


Sign in / Sign up

Export Citation Format

Share Document