Effects of surface texture on journal-bearing characteristics under steady-state operating conditions

Author(s):  
N Tala-Ighil ◽  
P Maspeyrot ◽  
M Fillon ◽  
A Bounif
2006 ◽  
Vol 129 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Alex de Kraker ◽  
Ron A. J. van Ostayen ◽  
A. van Beek ◽  
Daniel J. Rixen

In this paper a multiscale method is presented that includes surface texture in a mixed lubrication journal bearing model. Recent publications have shown that the pressure generating effect of surface texture in bearings that operate in full film conditions may be the result of micro-cavitation and/or convective inertia. To include inertia effects, the Navier–Stokes equations have to be used instead of the Reynolds equation. It has been shown in earlier work (de Kraker et al., 2006, Tribol. Trans., in press) that the coupled two-dimensional (2D) Reynolds and 3D structure deformation problem with partial contact resulting from the soft EHL journal bearing model is not easy to solve due to the strong nonlinear coupling, especially for soft surfaces. Therefore, replacing the 2D Reynolds equation by the 3D Navier–Stokes equations in this coupled problem will need an enormous amount of computing power that is not readily available nowadays. In this paper, the development of a micro–macro multiscale method is described. The local (micro) flow effects for a single surface pocket are analyzed using the Navier–Stokes equations and compared to the Reynolds solution for a similar smooth piece of surface. It is shown how flow factors can be derived and added to the macroscopic smooth flow problem, that is modeled by the 2D Reynolds equation. The flow factors are a function of the operating conditions such as the ratio between the film height and the pocket dimensions, the surface velocity, and the pressure gradient over a surface texture unit cell. To account for an additional pressure buildup in the texture cell due to inertia effects, a pressure gain is introduced at macroscopic level. The method also allows for microcavitation. Microcavitation occurs when the pressure variation due to surface texture is larger than the average pressure level at that particular bearing location. In contrast with the work of Patir and Cheng (1978, J. Lubrication Technol., 78, pp. 1–10), where the microlevel is solved by the Reynolds equation, and the Navier–Stokes equations are used at the microlevel. Depending on the texture geometry and film height, the Reynolds equation may become invalid. A second pocket effect occurs when the pocket is located in the moving surface. In mixed lubrication, fluid can become trapped inside a pocket and squeezed out when the pocket is running into an area with higher contact load. To include this effect, an additional source term that represents the average fluid inflow due to the deformation of the surface around the pocket is added to the Reynolds equation at macrolevel. The additional inflow is computed at microlevel by numerical solution of the surface deformation for a single pocket that is subject to a contact load. The pocket volume is a function of the contact pressure. It must be emphasized that before ready-to-use results can be presented, a large number of simulations to determine the flow factors and pressure gain as a function of the texture parameters and operating conditions have yet to be done. Before conclusions can be drawn, regarding the dominanant mechanism(s), the flow factors and pressure gain have to be added to the macrobearing model. In this paper, only a limited number of preliminary illustrative simulation results, calculating the flow factors for a single 2D texture geometry, are shown to give insight into the method.


1973 ◽  
Vol 95 (3) ◽  
pp. 372-380 ◽  
Author(s):  
J. Pirvics ◽  
V. Castelli

A bearing system using a compliant surface may be so constructed that the lubricant pressure distribution is either stationary or in motion relative to the elastomer. In the latter case the motion of the deformation in the elastomer introduces inertial effects which can be important at high enough bearing velocities. This paper is concerned with the assessment of these effects. Steady state operating conditions are computed and analytical techniques presented for the infinite width slider and infinite length journal bearing.


Author(s):  
Sanjay Sharma ◽  
Gourav Jamwal ◽  
Rajeev K Awasthi

In the present study, the optimum design parameters of chevron-shaped surface texture have been determined for the steady state performance enhancement of a hydrodynamic journal bearing. The fluid flow governing Reynolds equation has been solved using the finite element method, assuming iso-viscous and Newtonian fluid to obtain the static performance characteristics of textured hydrodynamic journal bearing. Different texture depths, areas and distributions have been numerically simulated and a set of optimum texture parameters has been determined based on the maximum performance enhancement ratio. The numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure build-up region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios. The performance enhancement ratio, which is the ratio of load-carrying capacity to coefficient of friction is found to be maximum at texture depth of 0.4, k = 0.3, textured zone located in the increasing pressure region and eccentricity ratio of 0.2.


1973 ◽  
Vol 95 (3) ◽  
pp. 363-371 ◽  
Author(s):  
J. Pirvics ◽  
V. Castelli

A bearing system using a compliant surface may be so constructed that the lubricant pressure distribution is either stationary or in motion relative to the elastomer. In the latter case the motion of the deformation in the elastomer introduces viscoelastic effects which can be important at conventional bearing velocities. This paper is concerned with the assessment of these effects. Steady state operating conditions are computed and analytical techniques presented for the infinite width slider and infinite length journal bearing.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


Author(s):  
Bassam A. Hemade ◽  
Hamed A. Ibrahim ◽  
Hossam E.A. Talaat

Background: The security assessment plays a crucial role in the operation of the modern interconnected power system network. Methods: Hence, this paper addresses the application of k-means clustering algorithm equipped with Principal Component Analysis (PCA) and silhouette analysis for the classification of system security states. The proposed technique works on three principal axes; the first stage involves contingency quantification based on developed insecurity indices, the second stage includes dataset preparation to enhance the overall performance of the proposed method using PCA and silhouette analysis, and finally the application of the clustering algorithm over data. Results: The proposed composite insecurity index uses available synchronized measurements from Phasor Measurement Units (PMUs) to assess the development of cascading outages. Considering different operational scenarios and multiple levels of contingencies (up to N-3), Fast Decoupled Power Flow (FDPF) have been used for contingency replications. The developed technique applied to IEEE 14-bus and 57-bus standard test system for steady-state security evaluation. Conclusion: The obtained results ensure the robustness and effectiveness of the established procedure in the assessment of the system security irrespective of the network size or operating conditions.


1986 ◽  
Vol 51 (11) ◽  
pp. 2481-2488
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

The paper presents a simple model of recrystallization with countercurrent flows of the solution and the crystals being purified. The model assumes steady-state operating conditions, an equilibrium between the outlet streams of each stage, and the same equilibrium temperature and distribution coefficient for all stages. With these assumptions, the model provides the basis for analyzing the variation in the degree of purity as a function of the number of recrystallization stages. The analysis is facilitated by the use of a diagram constructed for the limiting case of perfect removal of the mother liquor from the crystals between the stages.


1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


Sign in / Sign up

Export Citation Format

Share Document