Prediction of Sound Level in Rooms and Experimental Validation

1997 ◽  
Vol 4 (2) ◽  
pp. 117-135
Author(s):  
Mauricy Cesar R. de Souza ◽  
Samir N.Y. Gerges

Traditional Sabine equations still are used for factories or offices where diffuse sound fields rarely occur and prediction can be inaccurate. More recently, methods based on geometric acoustics have been developed which require large computing time and which demand better defined input data. A problem, often encountered, is how to include input data which is appropriate, accurate and relatively easy to obtain. Three acoustic models of a furnished room were created: a diffuse field, an image source and a ray tracing model. The initial values of absorption coefficient and sound power level were obtained by standard measurements and the sound propagation SP was predicted and compared with measurement for each model. Then, the models were calibrated by altering the input parameters in order to minimise the difference between predicted and measured values. Sound pressure level due to two sources was also predicted and compared with measurement. For the room studied, the precision of the predictions, after calibration, is similar for the three models considered, with an average difference between simulated and measured values of less than 2 dB. Without the calibration procedure, the ray-tracing model gave the most precise first estimate. The diffuse and image source models needed significant modification of the input data to obtain a similar precision. The sound field in the room chosen for this study was nearly diffuse and simulation, based on geometric acoustics, did not offer clear advantages. However, this will not be the case for rooms with more complicated geometrical and acoustic characteristics such as in factories and offices. In addition, the image source model will not be appropriate for internal fittings which are much more complex than in the present study and an appropriate estimate of the scattering cross-section is problematical. In the ray tracing model, this problem is circumvented by incorporating the fittings as part of the geometry of the room.

Author(s):  
Michael Ertl ◽  
Hermann Landes

The international standard for the determination of the sound power level of transformers allows both the sound pressure and the sound intensity measurement method. Since the sound measurements take place in the reactive near-field next to the vibrating transformer tank walls, local disturbances influence the sound field characteristics at the measurement positions. As a result, the measured mean sound power level differs commonly up to 6dB at comparative measurements with both methods. Beyond these near field effects, the influence of an industrial measurement environment (background sound sources, hard-reflecting floor, semi-reverberant walls, and standing waves) to the sound pressure and sound intensity field characteristics is investigated. Hereby, numerical analyses based on 3D-FEM with consideration of the fluid-structure-coupling are used. The measured sound level differences can be re-produced and clarified in numerical analyses.


2021 ◽  
Vol 263 (3) ◽  
pp. 3731-3737
Author(s):  
Yusuke Makino ◽  
Yasushi Takano

Change in A-weighted sound pressure level or Noise level of radiated sound due to sound sources moving at low Mach number at the same speed along a straight track is discussed in this paper. When a sound source move, frequency and amplitude modulation is observed in the radiated sound field. Without their modulation, the noise level at a receiving point is determined only by distance and A-weighted sound power level of each sources. Solution of modulated frequency and amplitude of radiated sound can be obtained by using the Duhamel's efficient calculation. The modulated frequency and amplitude increase for approaching sources and decrease for receding sources. The difference of maximum noise level,and the equivalent sound level during the sources passing-by, with or without considering the modulation, increases monotonically with respect to source velocity, and independent of distance from the track. This difference increases as dominant frequency band of the sources decreases due to A-weighting below 1 kHz.


Author(s):  
Masataka YAMAGUCHI ◽  
Hirokazu NONAKA ◽  
Yoshio HATADA ◽  
Yoshihiro UTSUNOMIYA ◽  
Kunimitsu INOUCHI ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2722
Author(s):  
Zhiwen Qian ◽  
Dejiang Shang ◽  
Yuan Hu ◽  
Xinyang Xu ◽  
Haihan Zhao ◽  
...  

The Green’s function (GF) directly eases the efficient computation for acoustic radiation problems in shallow water with the use of the Helmholtz integral equation. The difficulty in solving the GF in shallow water lies in the need to consider the boundary effects. In this paper, a rigorous theoretical model of interactions between the spherical wave and the liquid boundary is established by Fourier transform. The accurate and adaptive GF for the acoustic problems in the Pekeris waveguide with lossy seabed is derived, which is based on the image source method (ISM) and wave acoustics. First, the spherical wave is decomposed into plane waves in different incident angles. Second, each plane wave is multiplied by the corresponding reflection coefficient to obtain the reflected sound field, and the field is superposed to obtain the reflected sound field of the spherical wave. Then, the sound field of all image sources and the physical source are summed to obtain the GF in the Pekeris waveguide. The results computed by this method are compared with the standard wavenumber integration method, which verifies the accuracy of the GF for the near- and far-field acoustic problems. The influence of seabed attenuation on modal interference patterns is analyzed.


Author(s):  
Huan Cong Nguyen ◽  
George R. MacCartney ◽  
Timothy Thomas ◽  
Theodore S. Rappaport ◽  
Benny Vejlgaard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document