scholarly journals Neurofilament light levels are associated with long-term outcomes in multiple sclerosis

2019 ◽  
Vol 26 (13) ◽  
pp. 1691-1699 ◽  
Author(s):  
Jens Kuhle ◽  
Tatiana Plavina ◽  
Christian Barro ◽  
Giulio Disanto ◽  
Dipen Sangurdekar ◽  
...  

Background: Neurofilament light chain (NfL) is a promising marker of disease activity/treatment response in multiple sclerosis (MS), although its predictive value for long-term clinical outcomes remains unclear. Objective: We measured NfL from a phase 3 trial in relapsing-remitting MS and investigated its association with outcomes after 8 and 15 years. Methods: NfL concentrations were measured by single molecule array assay in cerebrospinal fluid (CSF) from MS patients ( n = 235) in a 2-year randomized clinical trial (RCT) of intramuscular interferon β-1a, and in serum ( n = 164) from the extension study. Results: Year 2 CSF and Year 3 serum NfL were associated with brain parenchymal fraction (BPF) change over 8 years ( p < 0.0001, r = −0.46; p < 0.05. r = −0.36, respectively) and were predictive of reaching Expanded Disability Status Scale (EDSS) ⩾ 6.0 at Year 8 (odds ratio (OR) (upper vs lower tertile) = 3.4; 95% confidence interval (CI) = 1.2–9.9, p < 0.05; OR = 11.0, 95% CI = 2.0–114.6; p < 0.01, respectively). Serum NfL concentration (Year 4) was predictive of reaching EDSS score ⩾6.0 at 15 years (OR (upper vs lower tertile) = 4.9; 95% CI = 1.4–20.4; p < 0.05). NfL concentrations were complementary to 2-year BPF change in predicting long-term outcomes. Conclusion: Serum and CSF NfL concentrations were associated with long-term clinical outcomes in MS patients and are promising biomarkers for disease severity stratification supporting treatment decisions.

2020 ◽  
Vol 7 (5) ◽  
pp. e856 ◽  
Author(s):  
Dieter A. Häring ◽  
Harald Kropshofer ◽  
Ludwig Kappos ◽  
Jeffrey A. Cohen ◽  
Anuja Shah ◽  
...  

ObjectiveTo assess the long-term prognostic value of an integral of longitudinal measurements of plasma neurofilament light chain levels (NfLlong) over 12 and 24 months vs single neurofilament light chain (NfL) measurements in patients with relapsing-remitting MS (RRMS) and its additional value when combined with clinical and MRI measures.MethodsThis analysis included continuously fingolimod-treated patients with RRMS from the 24-month FTY720 Research Evaluating Effects of Daily Oral therapy in Multiple Sclerosis (FREEDOMS)/12-month Trial Assessing Injectable Interferon vs FTY720 Oral in Relapsing–Remitting Multiple Sclerosis (TRANSFORMS) phase 3 trials and their long-term extension, LONGTERMS. Patients were classified into high (≥30 pg/mL, n = 110) and low (<30 pg/mL, n = 164) NfL categories based on the baseline (BL) NfL value or the geometric mean NfLlong calculated over 12 and 24 months to predict disability-related outcomes and brain volume loss (BVL). The additional prognostic value of NfL was quantified using the area under the receiver operating characteristic (ROC) curve.ResultsA single high (vs low) NfL measure at BL was prognostic of a higher risk of reaching Expanded Disability Status Scale (EDSS) score ≥4 earlier (hazard ratio [HR] = 2.19; 95% CI = 1.21–3.97) and higher BVL over 120 months (difference: −1.12%; 95% CI = −2.07 to −0.17). When NfLlong was measured over 24 months, high NfL was associated with a higher risk of reaching EDSS score ≥4 (HR = 7.91; 95% CI = 2.99–20.92), accelerated 6-month confirmed disability worsening (HR = 3.14; 95% CI = 1.38–7.11), and 20% worsening in the Timed 25-Foot Walk Test (HR = 3.05; 95% CI = 1.38–6.70). Area under the ROC curve was consistently highest in models combining NfL with clinical and MRI measures.ConclusionsNfLlong had a higher prognostic value than single NfL assessments on long-term outcomes in RRMS. Combining it with clinical and MRI measures increased sensitivity and specificity to predict long-term disease outcomes.Classification of evidenceThis study provides Class I evidence that NfLlong was more strongly associated with long-term outcomes than single NfL assessments in patients with RRMS.


2018 ◽  
Vol 25 (5) ◽  
pp. 678-686 ◽  
Author(s):  
Nelly Siller ◽  
Jens Kuhle ◽  
Muthuraman Muthuraman ◽  
Christian Barro ◽  
Timo Uphaus ◽  
...  

Background: Monitoring neuronal injury remains one key challenge in early relapsing-remitting multiple sclerosis (RRMS) patients. Upon axonal damage, neurofilament – a major component of the neuro-axonal cytoskeleton – is released into the cerebrospinal fluid (CSF) and subsequently peripheral blood. Objective: To investigate the relevance of serum neurofilament light chain (sNfL) for acute and chronic axonal damage in early RRMS. Methods: sNfL levels were determined in 74 patients (63 therapy-naive) with recently diagnosed clinically isolated syndrome (CIS) or RRMS using Single Molecule Array technology. Standardized 3 T magnetic resonance imaging (MRI) was performed at baseline and 1–3 consecutive follow-ups (42 patients; range: 6–37 months). Results: Baseline sNfL correlated significantly with T2 lesion volume ( r = 0.555, p < 0.0001). There was no correlation between baseline sNfL and age, Expanded Disability Status Scale (EDSS) score or other calculated MRI measures. However, T2 lesion volume increased ( r = 0.67, p < 0.0001) and brain parenchymal volume decreased more rapidly in patients with higher baseline sNfL ( r = −0.623, p = 0.0004). Gd-enhancing lesions correlated positively with sNfL levels. Initiation of disease-modifying treatment led to a significant decrease in sNfL levels. Conclusion: sNfL indicates acute inflammation as demonstrated by correlation with Gd+ lesions. It is a promising biomarker for neuro-axonal damage in early multiple sclerosis (MS) patients, since higher baseline sNfL levels predicted future brain atrophy within 2 years.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Thebault ◽  
Mohammad Abdoli ◽  
Seyed-Mohammad Fereshtehnejad ◽  
Daniel Tessier ◽  
Vincent Tabard-Cossa ◽  
...  

2015 ◽  
Vol 21 (14) ◽  
pp. 1761-1770 ◽  
Author(s):  
S Modvig ◽  
M Degn ◽  
H Roed ◽  
TL Sørensen ◽  
HBW Larsson ◽  
...  

Background: Cerebrospinal fluid (CSF) biomarkers have been suggested to predict multiple sclerosis (MS) after clinically isolated syndromes, but studies investigating long-term prognosis are needed. Objective: To assess the predictive ability of CSF biomarkers with regard to MS development and long-term disability after optic neuritis (ON). Methods: Eighty-six patients with ON as a first demyelinating event were included retrospectively. Magnetic resonance imaging (MRI), CSF leukocytes, immunoglobulin G index and oligoclonal bands were registered. CSF levels of chitinase-3-like-1, osteopontin, neurofilament light-chain, myelin basic protein, CCL2, CXCL10, CXCL13 and matrix metalloproteinase-9 were measured by enzyme-linked immunosorbent assay. Patients were followed up after 13.6 (range 9.6–19.4) years and 81.4% were examined, including Expanded Disability Status Scale and MS functional composite evaluation. 18.6% were interviewed by phone. Cox regression, multiple regression and Spearman correlation analyses were used. Results: Forty-six (53.5%) developed clinically definite MS (CDMS) during follow-up. In a multivariate model MRI ( p=0.0001), chitinase 3-like 1 ( p=0.0033) and age ( p=0.0194) combined predicted CDMS best. Neurofilament light-chain predicted long-term disability by the multiple sclerosis severity scale ( p=0.0111) and nine-hole-peg-test ( p=0.0202). Chitinase-3-like-1 predicted long-term cognitive impairment by the paced auditory serial addition test ( p=0.0150). Conclusion: Neurofilament light-chain and chitinase-3-like-1 were significant predictors of long-term physical and cognitive disability. Furthermore, chitinase-3-like-1 predicted CDMS development. Thus, these molecules hold promise as clinically valuable biomarkers after ON as a first demyelinating event.


Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 685
Author(s):  
Dejan Jakimovski ◽  
Niels Bergsland ◽  
Michael G. Dwyer ◽  
Deepa P. Ramasamy ◽  
Murali Ramanathan ◽  
...  

Both perfusion-weighted imaging (PWI) measures and serum neurofilament light (sNfL) chain levels have been independently associated with disability in multiple sclerosis (MS) patients. This study aimed to determine whether these measures are correlated to each other or independently describe different MS processes. For this purpose, 3T MRI dynamic susceptibility contrast (DSC)–PWI and single-molecule assay (Simoa)-based sNfL methods were utilized when investigating 86 MS patients. The perfusion measures of mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF) were derived for the normal-appearing whole brain (NAWB), the normal-appearing white matter (NAWM), the gray matter (GM), the deep GM (DGM), and the thalamus. The normalized CBV and CBF (nCBV and nCBV) were calculated by dividing by the corresponding NAWM measure. Age- and sex-adjusted linear regression models were used to determine associations between the DSC–PWI and sNfL results. False discovery rate (FDR)-adjusted p-values < 0.05 were considered statistically significant. A greater age and thalamic MTT were independently associated with higher sNfL levels (p < 0.001 and p = 0.011) and explained 36.9% of sNfL level variance. NAWM MTT association with sNfL levels did not survive the FDR correction. In similar models, a lower thalamic nCBF and nCBV were both associated with greater sNfL levels (p < 0.001 and p = 0.022), explaining 37.8% and 44.7% of the variance, respectively. In conclusion, higher sNfL levels were associated with lower thalamic perfusion.


2020 ◽  
Vol 7 (4) ◽  
pp. e749 ◽  
Author(s):  
Marie-Christine Reinert ◽  
Pascal Benkert ◽  
Jens Wuerfel ◽  
Zuzanna Michalak ◽  
Esther Ruberte ◽  
...  

ObjectiveTo investigate serum neurofilament light chain (sNfL) as a potential biomarker for disease activity and treatment response in pediatric patients with multiple sclerosis (MS).MethodsIn this retrospective cohort study, sNfL levels were measured in a pediatric MS cohort (n = 55, follow-up 12–105 months) and in a non-neurologic pediatric control cohort (n = 301) using a high-sensitivity single-molecule array assay. Association of sNfL levels and treatment and clinical and MRI parameters were calculated.ResultsUntreated patients had higher sNfL levels than controls (median 19.0 vs 4.6 pg/mL; CI [4.732, 6.911]), p < 0.001). sNfL levels were significantly associated with MRI activity (+9.1% per contrast-enhancing lesion, CI [1.045, 1.138], p < 0.001; +0.6% per T2-weighted lesion, CI [1.001, 1.010], p = 0.015). Higher values were associated with a relapse <90 days ago (+51.1%; CI [1.184, 1.929], p < 0.001) and a higher Expanded Disability Status Scale score (CI [1.001, 1.240], p = 0.048). In patients treated with interferon beta-1a/b (n = 27), sNfL levels declined from 14.7 to 7.9 pg/mL after 6 ± 2 months (CI [0.339, 0.603], p < 0.001). Patients with insufficient control of clinical or MRI disease activity under treatment with interferon beta-1a/b or glatiramer acetate who switched to fingolimod (n = 18) showed a reduction of sNfL levels from 16.5 to 10.0 pg/mL 6 ± 2 months after switch (CI [0.481, 0.701], p < 0.001).ConclusionssNfL is a useful biomarker for monitoring disease activity and treatment response in pediatric MS. It is most likely helpful to predict disease severity and to guide treatment decisions in patients with pediatric MS. This study provides Class III evidence that sNfL levels are associated with disease activity in pediatric MS.


2021 ◽  
pp. eabi7643
Author(s):  
Mercedes Prudencio ◽  
Young Erben ◽  
Christopher P. Marquez ◽  
Karen R. Jansen-West ◽  
Camila Franco-Mesa ◽  
...  

Brain imaging studies of patients with COVID-19 show evidence of macro- and micro-hemorrhagic lesions, multifocal white matter hyperintensities, and lesions consistent with posterior reversible leukoencephalopathy. Imaging studies, however, are subject to selection bias and prospective studies are challenging to scale. Here, we evaluated whether serum neurofilament light chain (NFL), a neuroaxonal injury marker, could predict the extent of neuronal damage in a cohort of 142 hospitalized patients with COVID-19. NFL was elevated in the serum of patients with COVID-19 compared to healthy controls, including those without overt neurological manifestations. Higher NFL serum concentrations were associated with worse clinical outcomes. In one hundred hospitalized patients with COVID-19 treated with remdesivir, a trend toward lower NFL serum concentrations was observed. These data suggest that patients with COVID-19 may experience neuroaxonal injury and may be at risk for long-term neurological sequelae. Neuroaxonal injury should be considered as an outcome in acute pharmacotherapeutic trials for COVID-19.


2021 ◽  
Author(s):  
Henning H. Rise ◽  
Synne Brune ◽  
Claudia Chien ◽  
Tone Berge ◽  
Steffan D. Bos ◽  
...  

AbstractThe pathophysiological mechanisms for classical plaque characteristics and their predictive value for clinical course and outcome in multiple sclerosis is unclear. Connectivity-based approaches incorporating the distribution and magnitude of the extended brain network aberrations caused by lesions may offer higher sensitivity for axonal damage. Using individual brain disconnectome mapping, we tested the longitudinal associations between putative brain network aberrations and levels of serum neurofilament light chain (sNfL) as a neuroaxonal injury biomarker.Multiple sclerosis patients (n = 328, mean age 42.9 years, 71 % female) were prospectively enrolled at four European multiple sclerosis centres, and reassessed after two years (n = 280). Post-processing of 3 Tesla (3T) MRI data was performed at one centre using a harmonized pipeline, and disconnectome maps were calculated using BCBtoolkit based on individual lesion maps. Global disconnectivity (GD) was defined as the average disconnectome probability in each patient’s white matter. Serum NfL concentrations were measured by single molecule array (Simoa). Robust linear mixed models (rLMM) with GD or T2-lesion volume (T2LV) as dependent variables, patient and centre as a random factor, sNfL, age, sex, timepoint for visit, diagnosis, and treatment as fixed factors were run.Robust LMM revealed significant associations between higher levels of GD and increased sNfL (t = 2.30, β = 0.03, p = 0.02), age (t = 5.01, β = 0.32, p < 5.5 × 10−7), and diagnosis progressive multiple sclerosis (PMS); t = 1.97, β = 1.06, p = 0.05), but not for sex (t = 0.78, p = 0.43), treatments (effective; t = 0.85, p = 0.39, highly-effective; t = 0.86, p = 0.39) or sNfL change between base line and two-year follow up (t = −1.65, p = 0.10). Voxel-wise analyses revealed distributed associations in cerebellar and brainstem regions.In our prospective multi-site multiple sclerosis cohort, rLMMs demonstrated that the extent of global brain disconnectivity is sensitive to a systemic biomarker of axonal damage, sNfL, in patients with multiple sclerosis. These findings provide a neuropathological correlate of advanced disconnectome mapping and provide a platform for further investigations of the functional and clinical relevance in patients with brain disorders.


2021 ◽  
Vol 14 ◽  
pp. 175628642110019
Author(s):  
Sinah Engel ◽  
Maria Protopapa ◽  
Falk Steffen ◽  
Vakis Papanastasiou ◽  
Christoforos Nicolaou ◽  
...  

Background: Serum neurofilament light chain (sNfL) is a promising biomarker to complement the decision-making process in multiple sclerosis (MS) patients. However, although sNfL levels are able to detect disease activity and to predict future disability, the growing evidence has not yet been translated into practicable recommendations for an implementation into clinical routine. Methods: The observation of a patient with extensive inflammatory activity in magnetic resonance imaging (MRI) along with an extremely high sNfL level in the absence of any clinical symptoms prompted us to investigate common characteristics of our MS patients with the highest sNfL levels in a retrospective cohort study. The 97.5th percentile was chosen as a cut-off value because the mean sNfL level of the resulting extreme neurofilament light chain (NfL) cohort corresponded well to the sNfL level of the presented case. Patient characterization included clinical and MRI assessment with a focus on disease activity markers. sNfL levels were determined by single molecule array. Results: The 97.5th percentile of our MS cohort (958 sNfL measurements in 455 patients) corresponded to a threshold value of 46.1 pg/ml. The mean sNfL level of the extreme sNfL cohort ( n = 24) was 95.6 pg/ml (standard deviation 68.4). Interestingly, only 15 patients suffered from a relapse at the time point of sample collection, whereas nine patients showed no signs of clinical disease activity. sNfL levels of patients with and without relapse did not differ [median 81.3 pg/ml (interquartile range [IQR] 48.0–128) versus 80.2 pg/ml (IQR 46.4–97.6), p = 0.815]. The proportion of patients with contrast-enhancing lesions was high and also did not differ between patients with and without relapse (92.9% versus 87.5%, p = 0.538); 78.9% of the patients not receiving a high-efficacious therapy had ongoing disease activity during a 2-year follow-up. Conclusion: Extremely high sNfL levels are indicative of subclinical disease activity and might complement treatment decisions in ambiguous cases.


2021 ◽  
Vol 14 ◽  
pp. 175628642110576
Author(s):  
Kimberley Allen-Philbey ◽  
Stefania De Trane ◽  
Zhifeng Mao ◽  
Cesar Álvarez-González ◽  
Joela Mathews ◽  
...  

Objective: To report on safety and effectiveness of subcutaneous cladribine (Litak®) in multiple sclerosis (MS) patients. Methods: Litak® was offered to MS-patients irrespective of disease course. Litak® 10 mg was administered for 3–4 days during week 1. Based on lymphocyte count at week 4, patients received another 0–3 doses at week 5. A second course was administered 11 months later. Follow-up included adverse events, relapses, expanded disability status scale (EDSS), 9-hole-peg and Timed-25-foot-walking tests, no-evidence-of-disease-activity (NEDA), no-evidence-of-progression-or-active-disease (NEPAD), MRI, cerebrospinal fluid (CSF) neurofilament light chain (NfL), and lymphocyte counts. Results: In all, 208 patients received at least one course of treatment. Age at baseline was 44 (17–72) years and EDSS 0–8.5. Cladribine was generally well tolerated. One myocardial infarction, one breast cancer, and three severe skin reactions occurred without long-term sequelae. Two patients died (one pneumonia, one encephalitis). Lymphopenia grade 3 occurred in 5% and grade 4 in 0.5%. In 94 out of 116 pwMS with baseline and follow-up (BaFU) data after two treatment courses, EDSS remained stable or improved. At 18 months, 64% of patients with relapsing MS and BaFU data ( n = 39) had NEDA. At 19 months, 62% of patients with progressive MS and BaFU data ( n = 13) had NEPAD. Of n = 13 patients whose CSF-NfL at baseline was elevated, 77% were normalised within 12 months. Conclusions: Litak® was well tolerated. Effectiveness in relapsing MS appeared similar to cladribine tablets and was encouraging in progressive MS. Our data suggest cladribine may be safe and effective in MS-patients irrespective of their disease stage.


Sign in / Sign up

Export Citation Format

Share Document