Seismic fragility assessment of long-span cable-stayed bridges in China

2016 ◽  
Vol 19 (11) ◽  
pp. 1797-1812 ◽  
Author(s):  
Jian Zhong ◽  
Yutao Pang ◽  
Jong-Su Jeon ◽  
Reginald DesRoches ◽  
Wancheng Yuan
2011 ◽  
Vol 255-260 ◽  
pp. 2612-2617
Author(s):  
Gang Jin Li ◽  
Wen Hua Zhang

As important junction in lifeline transportation system, bridges are the most seismic vulnerable components. Based on the capacity/demand (C/D) analysis of bridge components, a practical method is established for seismic fragility assessment of long-span cable-stayed bridges. Depending on this approach, the seismic vulnerability assessment of the Wangdong Bridge, a cable-stayed bridge with a main span of 638m in Anhui Province, is conducted, and the feasibility of the approach is verified.


2012 ◽  
Vol 12 (1) ◽  
pp. 160-164
Author(s):  
Chi-Yu Jiao ◽  
Jian-Zhong Li ◽  
Pei-Heng Long

2019 ◽  
Vol 45 (5) ◽  
pp. 3569-3579
Author(s):  
Shengjiang Sun ◽  
Kuihua Mei ◽  
Yiming Sun ◽  
Bo Li ◽  
Huanzi Huang

2012 ◽  
Vol 446-449 ◽  
pp. 1158-1166 ◽  
Author(s):  
Hong Jiang Li

Different from traditional strengthening methods, the technology on replacement of structural members is a new strengthening concept for solving the problem of local failures in prestressed concrete cable-stayed bridges. To clarify the characteristics and realization ways of this technology, practical experience and latest achievements of strengthening prestressed concrete cable-stayed bridges in recent years in China were summarized comprehensively, such as replacement of stay cables, replacement of closure segment, replacement of tension rocker bearing cables at subsidiary piers, et al. Forms of Special diseases were described, and their failure mechanisms were given. Then calculation methods and key techniques of these strengthening ways were introduced. Engineering application and practice showed, the technology on replacement of structural members is a system engineering, namely, not only new structural members should meet the mechanical requirements of their own, but also the structural condition of whole bridge should be improved through replacing structural members. Establishment and development of this technology had important and far-reaching significance to promote the technical level of strengthening long-span bridges under the condition of special diseases and ensure bridges in the sate of safe and sustainable operation.


Author(s):  
Henryk Zobel ◽  
Wojciech Karwowski ◽  
Agnieszka Golubińska ◽  
Thakaa Al-Khafaji

<p>The problem of bridge fires is growing. Because of a bad experience in Poland, it was decided to improve fire resistance of long span bridge structures, and of cable-stayed bridges in particular. Statistics shows that fire is a real threat to this kind of structure. They also confirm that the worst results of fire are for those with an orthotropic deck rather than with a concrete one. The basic problems to solve are how to predict fire resistance of a particular bridge and how to ensure safety and structural integrity of the bridge structure. Taking into account the fact that bridge standards do not include information relating to fire protection, and fire standards do not determine rules for design, construction and maintenance of such structures, there are no regulations for this problem. Fire scenarios are devoted to buildings, but the thermo-structural behavior of bridges is different.</p>


Sign in / Sign up

Export Citation Format

Share Document