Development of a novel tuned liquid damper with floating base for converting deep tanks into effective vibration control devices

2020 ◽  
pp. 136943322095353
Author(s):  
Tanmoy Konar ◽  
Aparna (Dey) Ghosh

Despite the proven effectiveness of tuned liquid dampers (TLDs), readily available liquid storage tanks are rarely utilized for vibration control of laterally-excited structures, as these are deep tanks with low inherent damping. Further, the fluctuation in liquid level in these tanks also causes variation in the fundamental sloshing frequency, leading to detuning. To overcome these problems, a novel TLD with floating base (TLD-FB) is proposed, in which a constant and shallow liquid level is maintained between the free liquid surface and the floating base. The liquid above the floating base acts as a conventional shallow TLD that always remains tuned to the structural frequency. The paper demonstrates how the TLD-FB can be incorporated into a water storage tank system on an example building without disturbing its functionality and achieves structural response reduction, despite water level fluctuations in the tanks.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8211
Author(s):  
Yoon-Soo Shin ◽  
Junhee Kim

Liquid dampers, such as tuned liquid dampers (TLDs), are employed to improve serviceability by reducing wind-affected building vibrations. In order to maximize the vibration suppression efficiency of the liquid damper, the tuning frequency of the liquid damper should match the natural frequency of the building. Experimental evaluation of the tuning frequency of a liquid damper performed in a factory prior to installation in a building is a critical task to ensure correct performance, and for this, multipoint measurement of the TLD is required. In this study, a novel liquid level measurement system combining Laser Doppler Vibrometer (LDV) and a stepwise rotating galvanometer scanner was developed to observe liquid sloshing in TLD. The proposed system can measure the liquid level at multiple points simultaneously with a single laser point. In the experimental phase, the liquid damper’s natural frequency and mode shape are experimentally evaluated utilizing the developed system. The performance of the proposed system was verified by comparison with the video sensing system.


2012 ◽  
Vol 160 ◽  
pp. 240-244 ◽  
Author(s):  
Li Tian ◽  
Shu Jin ◽  
Zi Long Wang

In this paper, multiple tuned liquid dampers control for rain-wind-induced response of long span transmission tower is investigated. Equations of motion for a structure-TLD system are derived. According to the mechanism of vibration control, rain-wind-induced vibration control for tower model with multiple tuned liquid dampers is carried out by using numerical simulation. Three-dimensional finite element model of tower based on a real project is established. Rain-wind load time history is simulated based on wind and rain theory. Time history curves and the maximum responses without and with tuned liquid damper under rain-wind excitation are analyzed and discussed. The results show that the tuned liquid damper could decrease the rain-wind-induced response of long span transmission tower, and the device could be installed in tower when the response too large.


2011 ◽  
Vol 2011.49 (0) ◽  
pp. 149-150
Author(s):  
Takashi IKEDA ◽  
Hisashi TAKAHASHI ◽  
Yuji HARATA ◽  
Yukio ISHIDA

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Hong-Nan Li ◽  
Ting-Hua Yi ◽  
Qin-Yang Jing ◽  
Lin-Sheng Huo ◽  
Guo-Xin Wang

This paper focuses on the wind-induced vibration control of the Dalian international trade mansion (DITM) by using the tuned liquid dampers (TLDs). To avoid the intensive computationally demanding problem caused by tens of thousand of degrees of freedom (DOF) of the structure in the numerical analysis, the three-dimension finite element model of the DITM is first simplified to the equivalent series multi-DOF system. The wind loading is subsequently simulated by the Davenport model according to the structural environmental condition where the actual samples of wind speed are measured. Following that, the shallow- and deep-water wave theories are applied to model the liquid sloshing inside TLDs, the tank sizing, and required water depth, and numbers of TLDs are given according to the numerical results of different cases. Comparisons between uncontrolled and controlled displacement and acceleration responses of the DITM under wind forces show that the designed shallow tank has higher efficiency than the deep one, which can effectively reduce the structural response amplitudes and enhance the comfortableness of the mansion. The preliminary TLD design procedure presented in this paper could be applied as a reference to the analysis and design of the wind-induced vibration for high-rise buildings using the TLD.


2012 ◽  
Vol 226-228 ◽  
pp. 1218-1227
Author(s):  
Andrew S. Ross ◽  
Ashraf A. El Damatty ◽  
Ayman M. El Ansary

The tuned liquid damper (TLD) is a proven and an increasingly popular auxiliary device for mitigating the dynamic effects induced by wind loading on tall buildings. As buildings become taller, lighter, and more flexible, there is a greater contribution from the dynamic component. The most reliable tool for assessing the dynamic component is wind tunnel testing. A boundary layer wind tunnel is capable of accurately calculating an equivalent static wind load (ESWL) acting on a building. The current study investigates the reduction in the ESWL of a lateral-torsional coupled building with a TLD system installed. The building is sensitive to torsion in the first two vibration modes. The current investigation uses three unique multi-modal TLD systems designed specifically for a lateral-torsional coupled building. The building ESWL is evaluated with the TLD systems using measurements from tests conducted at the Boundary Layer Wind Tunnel Laboratory at Western University.


2020 ◽  
Vol 20 (07) ◽  
pp. 2050075
Author(s):  
Bui Pham Duc Tuong ◽  
Phan Duc Huynh

Tuned liquid dampers (TLDs) have many advantages in controlling building vibrations, among which multi-tuned liquid dampers (MTLDs) appear to have better stability and effectiveness. However, the tank wall was assumed to be rigid in the past by ignoring the fluid-structure interaction (FSI) at the interface, resulting in simplified calculation for the design of the TLDs. Moreover, the fluid in the tank was considered to be separate from the structure. This paper presents two numerical methods to control the responses of the frame under the dynamic loadings: (1) the lumped mass method for quickly designing the TLDs, and (2) the finite volume method/finite element method (FVM/FEM) for analyzing the fluid and solid domains of the TLDs in a single computational 3D model. In addition, the multi-field interaction between the structure-fluid-tank walls is considered by solving the coupling equations at the interfaces. A steel frame is fitted with an MTLD and tested experimentally on a shaking table to investigate its dynamic response. Numerical results are verified with the experimental ones, which show good agreement.


Author(s):  
Masato Abé ◽  
Yozo Fujino ◽  
Yasuyuki Sano

Abstract To enhance the performance of tuned liquid dampers (TLD), active TLD which contains magnetic fluid activated by electromagnet is proposed. At the first half of the paper, characteristics of sloshing motion of magnetic fluid subject to dynamic magnetic field is experimentally studied. Sloshing motion and base shear force are found to be effectively controlled by magnetic force. Then, a rule-based control law is constructed and applied to the vibration control of a model building. Vibration suppression effect of passive TLD is improved by applying appropriately scheduled dynamic magnetic field.


Sign in / Sign up

Export Citation Format

Share Document