Analytical study on torsional behavior of concrete beams strengthened with fiber reinforced polymer laminates using softened truss model

2020 ◽  
pp. 136943322098169
Author(s):  
Muhanad M Majed ◽  
Mohammadreza Tavakkolizadeh ◽  
Abbas A Allawi

This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment to accomplish the analysis, solve the appropriate equations, and calculate the torsional moment and angle of twist at all points. The parametric study considered the effect of effective fiber strain to reach a better prediction for the full torsional behavior. The model was able to predict the torsional behavior of the RC beams strengthened with FRP materials before and after cracking stages with reasonable accuracy.

2017 ◽  
Vol 112 ◽  
pp. 125-136 ◽  
Author(s):  
Garyfalia G. Triantafyllou ◽  
Theodoros C. Rousakis ◽  
Athanasios I. Karabinis

2020 ◽  
Vol 10 (7) ◽  
pp. 2489 ◽  
Author(s):  
Francesca Sciarretta

This paper presents a study on the potentiality of seismic retrofitting solutions with pultruded Fiber Reinforced Polymer (FRP) profiles. This material can be used in connected frames providing lightweight, corrosion-free and reversible retrofitting of masonry buildings with the moderate requirements of surface preservation. In a hypothetical case study, an experimental program was designed; monotonic shear tests on a half-size physical model of the sample wall were performed to assess the structural performance before and after retrofitting with a basic frame of pultruded Glass Fiber Reinforced Polymer (GFRP) C-shaped profiles, connected to the masonry by steel threaded bar connections. During the tests, the drift, the diagonal displacements in the masonry and the micro-strain in the profiles were measured. The retrofitted system has proven very effective in delaying crack appearance, increasing the maximum load (+85% to +93%) and ultimate displacement (up to +303%). The failure mode switches from rocking to a combination of diagonal cracking and bed joint sliding. The gauge recordings show a very limited mechanical exploitation of the GFRP material, despite the noticeable effectiveness of the retrofit. The application seems thus promising and worth a deeper research focus. Finally, a finite element modelling approach has been developed and validated, and it will be useful to envisage the effects of the proposed solution in future research.


Sign in / Sign up

Export Citation Format

Share Document