scholarly journals Experimental validation of the proposed extended Kalman filter with unknown inputs algorithm based on data fusion

2019 ◽  
Vol 39 (4) ◽  
pp. 835-849 ◽  
Author(s):  
Jinshan Huang ◽  
Xianzhi Li ◽  
Xiongjun Yang ◽  
Zhupeng Zheng ◽  
Ying Lei

The extended Kalman filter is a useful tool in the research of structural health monitoring and vibration control. However, the traditional extended Kalman filter approach is only applicable when the information of external inputs to structures is available. In recent years, some improved extended Kalman filter methods applied with unknown inputs have been proposed. The authors have proposed an extended Kalman filter with unknown inputs based on data fusion of partially measured displacement and acceleration responses. Compared with previous approaches, the drifts in the estimated structural displacements and unknown external inputs can be avoided. The feasibility of proposed extended Kalman filter with unknown inputs has been demonstrated by some numerical simulation examples. However, experimental validation of the proposed extended Kalman filter with unknown inputs has not been conducted. In this paper, an experiment is conducted to validate the effectiveness of the proposed approach. A five-story shear building model subjected to an unknown external excitation of wide-band white noise is conducted. Moreover, the data fusion of partially measured strain and acceleration responses from the building is adopted as it is difficult to accurately measure structural displacement in practice. Identified results show that the recently proposed extended Kalman filter with unknown inputs can be applied to identify structural parameters, structural states, and the unknown inputs in real time.

2021 ◽  
Author(s):  
Xiaoxiong Zhang ◽  
Jia He ◽  
Xugang Hua ◽  
Zhengqing Chen ◽  
Ou Yang

Abstract To date, a number of parameter identification methods have been developed for the purpose of structural health monitoring and vibration control. Among them, the extended Kalman filter (EKF) series methods are attractive in view of the efficient unbiased estimation in recursive manner. However, most of these methods are performed on the premise that the parameters are time-invariant and/or the loadings are known. To circumvent the aforementioned limitations, an online EKF with unknown input (OEKF-UI) approach is proposed in this paper for the identification of time-varying parameters and the unknown excitation. A revised observation equation is obtained with the aid of projection matrix. To capture the changes of structural parameters in real-time, an online tracking matrix (OTM) associated with the time-varying parameters is introduced and determined via an optimization procedure. Then, based on the principle of EKF, the recursive solution of structural states including the time-variant parameters can be analytically derived. Finally, using the estimated structural states, the unknown inputs are identified by means of least-squares estimation (LSE) at the same time-step. The effectiveness of the proposed approach is validated via linear and nonlinear numerical examples with the consideration of parameters being varied abruptly.


Author(s):  
Behzad Behdani ◽  
Mohsen Tajdinian ◽  
Mehdi Allahbakhshi ◽  
Marjan Popov ◽  
Miadreza Shafie-khah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document