Vehicle path following control in the presence of driver inputs

Author(s):  
Behrooz Mashadi ◽  
Mehdi Mahmoodi-K ◽  
Amir H Kakaee ◽  
Rana Hosseini
2020 ◽  
pp. 27-36
Author(s):  
Alexander A. Dyda ◽  
Ksenya N. Chumakova ◽  
Igor I. Pushkarev

This paper develops an approach to solving the problem of controlling the movement of a ship along a route. It is assumed that the route is specified using waypoints connected by line segments. The main idea of ​​the developed approach is to construct a set of auxiliary smooth functions having an extremum (maximum) on the corresponding sections of the route. The gradient vectors of the selected auxiliary functions are directed towards the corresponding section of the vessel's route. The sum of the vectors of the gradient of the auxiliary functions and the vector that specifies the direction on the selected section of the route determines the desired course of the vessel movement. It is shown that the chosen constructing algorithm for the desired vessel course ensures its output to the given trajectory.


Author(s):  
Xingyu Zhou ◽  
Zejiang Wang ◽  
Heran Shen ◽  
Junmin Wang

Abstract Concerning automated vehicles, various path-following controllers have been designed by the model reference adaptive control (MRAC) approach. Through appropriate Lyapunov redesigns, asymptotical stability and signal boundedness are ensured for the path-tracking control loops. However, transient behaviors of the closed-loop responses are seldom considered in the context of MRAC synthesis. To bridge the foregoing gap, a closed-loop reference model-based MRAC, which yields an improved transient performance compared with a traditional MRAC, is exploited to synthesize a vehicular path following control law. Besides, an infinitely differentiable projection operator is complemented to the control parameters' adaptation schemes for estimation speed-up and robustness enhancement. Hardware-in-the loop experiments are used to evaluate the proposed method and to demonstrate its improvement over some conventional MRAC designs.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhonghua Zhang ◽  
Caijin Yang ◽  
Weihua Zhang ◽  
Yanhai Xu ◽  
Yiqiang Peng ◽  
...  

This paper deals with a four-wheel-steering four-wheel-driving (4WS4WD) vehicle under the path-following control. Focuses are placed on the motion control of the vehicle, and the drive forces and steering angles for achieving accurate path-following by the vehicle are determined. In this research, a nonlinear vehicle model of three degrees of freedom (DOFs) is used. The vehicle path-following dynamics are modeled using the classical mass-damper-spring vibration theory, which is described by three ordinary differential equations of second order with lateral, heading and velocity deviations, and control parameters. Combined with the vehicle path-following dynamic model, the nonlinear vehicle dynamic model is decoupled in generalized coordinate space. The required drive forces and steering angles for the vehicle path-following controllers are thus calculated and control models are obtained. Theoretical analysis for steering and driving control models is also carried out. It discloses that control models can maintain good performance against uncertainties. The vehicle path-following control is exhibited by dynamic simulation in CarSim with consideration of a complex vehicle model and a variable-curvature planned path. Numerical results obtained are analyzed and show control models have capable of dealing with a complex path-following problem. This paper provides a new insight into understanding path-following control of a 4WS4WD vehicle at the generalized vibration level.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Zhonghua Zhang ◽  
Caijin Yang ◽  
Weihua Zhang ◽  
Yanhai Xu ◽  
Yiqiang Peng ◽  
...  

Further research on motion control of a 4WS4WD path-following vehicle is carried out in this paper. Focuses are placed on understanding and testing the vehicle path-following control models developed previously at a deep level. Control models are in relation to parameters introduced, and the effects of these parameters are discovered. Control models are interpreted by dynamic simulation using a 3DOF vehicle model with three cases. Three kinds of planned paths are considered in these cases to test control performances, which include the straight, circular, and sinusoidal paths. Interesting dynamic results are obtained and analyzed qualitatively, e.g., various steering modes. Simulation studies are extended with consideration of a fine vehicle dynamic model established in CarSim and a complex path composed of straight and curved segments. Control models are examined in a complex problem, and results obtained show that they are validated with robustness in dynamic environment.


2010 ◽  
Vol 36 (9) ◽  
pp. 1272-1278 ◽  
Author(s):  
Huo-Feng ZHOU ◽  
Bao-Li MA ◽  
Li-Hui SONG ◽  
Fang-Fang ZHANG

Author(s):  
Tong Xu ◽  
Dong Wang ◽  
Weigong Zhang

Unmanned pavement construction is of great significance in China, and one of the most important issues is how to follow the designed path near the boundary of the pavement construction area to avoid curbs or railings. In this paper, we raise a simple yet effective controller, named the proportional-integral-radius and improved particle swarm optimization (PIR-IPSO) controller, for fast non-overshooting path-following control of an unmanned articulated vehicle (UAV). Firstly, UAV kinematics model is introduced and segmented UAV steering dynamics model is built through field experiments; then, the raw data collected by differential global positioning system (DGPS) is used to build the measurement error distribution model that simulates positioning errors. Next, line of sight (LOS) guidance law is introduced and the LOS initial parameter is assigned based on human driving behavior. Besides, the initial control parameters tuned by the Ziegler-Nichols (ZN) method are used as the initial iterative parameters of the PSO controller. An improved PSO fitness function is also designed to achieve fast non-overshoot control performance. Experiments show that compared with the PSO, ZN and ZN-PSO controller, the PIR-PSO-based controller has significantly less settling time and almost no overshoot in various UAV initial states. Furthermore, compared with other controllers, the proposed PIR-IPSO-based controller achieves precise non-overshoot control, relatively less settling time and centimeter-level positioning error in various initial deviations.


Sign in / Sign up

Export Citation Format

Share Document