Research on Path Following Control Strategies for Lunar Rover under Loose Soil Terrains

2014 ◽  
Vol 7 (2) ◽  
pp. 119-127
Author(s):  
Tao Zhang ◽  
Cheng Shao ◽  
Pingshu Ge ◽  
Kun W. Yang
2019 ◽  
Vol 98 (2) ◽  
pp. 241-265 ◽  
Author(s):  
Bartomeu Rubí ◽  
Ramon Pérez ◽  
Bernardo Morcego

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142093057
Author(s):  
Dong-Liang Chen ◽  
Guo-Ping Liu ◽  
Ru-Bo Zhang ◽  
Xingru Qu

In this article, the coordinated path-following control problem for networked unmanned surface vehicles is investigated. The communication network brings time delays and packet dropouts to the fleet, which will have negative effects on the control performance of the fleet. To attenuate the negative effects, a novel networked predictive control scheme is proposed. By introducing the predictive error into the control scheme, the proposed control strategy admits some advantages compared with existing networked predictive control strategies, for example, a degree of robustness to disturbances, lower requirements for the computing capacity of the onboard processors, high flexibility in controller design, and so on. Conditions that guarantee the control performance of the overall system are derived in the theoretical analysis. At last, experiments on hovercraft test beds are implemented to verify the effectiveness of the proposed control scheme.


2015 ◽  
Vol 28 (2) ◽  
pp. 547-559 ◽  
Author(s):  
Linhui Li ◽  
Jing Lian ◽  
Haiyang Huang ◽  
Hongxu Wang ◽  
Yunpeng Zong ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhengyang Cui ◽  
Yong Wang

With growing worldwide interests in commercial, scientific, and military issues, there has been a corresponding rapid growth in demand for the development of unmanned aerial vehicles (UAVs) with more reliable and safer motion control abilities. This paper presents a new nonlinear path following scheme integrated with a heading control law for achieving accurate and reliable path following performance. Both backstepping and finite-time techniques are employed for developing the path following and heading control strategies capable of minimizing cross-track errors in finite-time with elegant transient performance, while the barrier Lyapunov function scheme is adopted to limit turning rates of the UAV for preventing it from capsizing which may be induced by overquick steering actions. A fixed-time nonlinear estimator, based on UAV kinematics, is designed for estimating the uncertainties with sideslip angles caused by external disturbances and inertial motions. To avoid the complicated calculation of derivatives of virtual control terms in backstepping, command filters and auxiliary systems are likewise introduced in the design of control laws. Extensive numerical simulation studies on a nonlinear UAV model are conducted to demonstrate the effectiveness of the proposed methodologies.


2010 ◽  
Vol 36 (9) ◽  
pp. 1272-1278 ◽  
Author(s):  
Huo-Feng ZHOU ◽  
Bao-Li MA ◽  
Li-Hui SONG ◽  
Fang-Fang ZHANG

Sign in / Sign up

Export Citation Format

Share Document