Idle speed performance improvement via torque balancing control in ignition-event scale for SI engines with multi-cylinders

2011 ◽  
Vol 13 (1) ◽  
pp. 65-76 ◽  
Author(s):  
P Li ◽  
T Shen ◽  
D Liu

Imbalance in torque generation leads to engine speed fluctuation. To improve the idle engine speed performance, the torque balancing control problem is addressed in this paper for multi-cylinder SI engines. To evaluate cylinder-to-cylinder imbalance, the average torque in ignition-event scale is introduced as controlled output, which enables a feedback control to be performed without measurement of instantaneous torque, and the individual spark advances are chosen as control inputs. A linear discrete time model with single input and single output is proposed to represent the dynamics of the imbalance, where a sequentially switching function is introduced to describe the spark advance signals delivered to each cylinder and the differences in torque generation caused by the individual cylinder characteristics are equivalently modelled as unknown offset in the inputs. An estimation algorithm with the proof of convergence is presented to provide on-line estimation of the unknown offset under the passivity assumption of the system. Furthermore, a feedback control law which combines the unknown offset estimation and the model predictive control is proposed. Finally, the unknown offset estimation and the feedback control approach are validated based on the experimental results carried out on a six-cylinder gasoline engine test bench.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Changhui Wang ◽  
Zhiyuan Liu

The estimation of the individual cylinder air-fuel ratio (AFR) with a single universal exhaust gas oxygen (UEGO) sensor installed in the exhaust pipe is an important issue for the cylinder-to-cylinder AFR balancing control, which can provide high-quality torque generation and reduce emissions in multicylinder engine. In this paper, the system dynamic for the gas in exhaust pipe including the gas mixing, gas transport, and sensor dynamics is described as an output delay system, and a new method using the output delay system observer is developed to estimate the individual cylinder AFR. With the AFR at confluence point augmented as a system state, an observer for the augmented discrete system with output delay is designed to estimate the AFR at confluence point. Using the gas mixing model, a method with the designed observer to estimate the individual cylinder AFR is presented. The validity of the proposed method is verified by the simulation results from a spark ignition gasoline engine from engine software enDYNA by Tesis.


Author(s):  
Mario Santillo ◽  
Suzanne Wait ◽  
Julia Buckland

We investigate control strategies for traditional throttle-in-bore as well as low-cost cartridge-style throttle bodies for the air-intake system (AIS) throttle used in low-pressure exhaust-gas recirculation (LPEGR) on a turbocharged gasoline engine. Pressure sensors placed upstream and downstream of the AIS throttle are available as signals from the vehicle’s engine control unit, however, we do not use high-bandwidth feedback control of the AIS throttle in order to maintain frequency separation from the higher-rate EGR loop, which uses the downstream pressure sensor for feedback control. A design-of-experiments conducted using a feed-forward lookup table-based AIS throttle control strategy exposes controller sensitivity to part-to-part variations. For accurate tracking in the presence of these variations, we explore the use of adaptive feedback control. In particular, we use an algebraic model representing the throttle plate effective opening area to develop a recursive least-squares (RLS)-based estimation routine. A low-pass filtered version of the estimated model parameters is subsequently used in the forward-path AIS throttle controller. Results are presented comparing the RLS-based feedback algorithm with the feed-forward lookup table-based control strategy. RLS is able to adapt for part-to-part and change-over-time variabilities and exhibits an improved steady-state tracking response compared to the feed-forward control strategy.


2020 ◽  
pp. 146808742096085
Author(s):  
J Valero-Marco ◽  
B Lehrheuer ◽  
JJ López ◽  
S Pischinger

The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper.


2016 ◽  
Vol 49 (11) ◽  
pp. 714-721 ◽  
Author(s):  
Andreas Daasch ◽  
Erik Schulz ◽  
Matthias Schultalbers

Author(s):  
Hideyuki Iwasaki ◽  
Yuuto Higasa ◽  
Masaaki Takiguchi ◽  
Seiichi Sue ◽  
Keitaro Shishido

We measured the friction of piston pin boss bearings for a gasoline engine to make sure of the state of lubrication. In addition, we checked how the shape of the piston pin as well as that of the pin boss influenced the state of bearing lubrication, which was analyzed according to the FEM calculations of pin and bearing contact pressure. As a result, it was made clear that the state of bearing lubrication sharply deteriorated at an engine speed of 3500 rpm or higher because the deformed pin caused the pin edge to heavily come into contact with the bearing, and a side relief was able to improve the state of lubrication at a high engine speed. We also gave a check to the piston pin for thickness to see how it influenced the state of lubrication, finding that a lighter-weight pin led to the deterioration of lubrication.


2012 ◽  
Vol 433-440 ◽  
pp. 6390-6396
Author(s):  
Pei Yong Ni ◽  
Xiang Li Wang

The reduction of sauter mean diameter (SMD) of droplets means the percent of the evaporated fuel, which is important to the formation of the combustible mixture in a port-injection gasoline engine during cold-start. Three-dimensional numerical simulation of SMD of the droplets in the inlet port of a gasoline engine was employed using the CFD software. This paper presented the effect of multi-parameters on SMD of the droplets including initial droplet velocity, intake temperature, fuel temperature, injection timing and engine speed. The simulation results show that the most influential parameters on SMD of the droplets are intake temperature and fuel temperature. The fuel evaporation rates increase approximately linearly with the intake air temperature and fuel temperature increasing. The initial droplet velocity and injection timing have a little effect on the fuel evaporation. As engine speed increases, SMD of the droplets firstly decreases and then increases. After intake-valve-open (IVO), back flow of gas in cylinders results in steep reduction of droplet diameter.


Author(s):  
J A Twiddle ◽  
N B Jones

This paper presents a technique for diagnosis of a class of engine faults, which adversely affect the combustion efficiency of a diesel generator set. The diagnosis is made by combining the evidence of two separate estimations of engine load with the outputs from a predictive fuzzy model of engine speed. Certain faults affect the periodicity of the engine speed signal. The variation in periodicity means that the load estimation from power spectral density of the speed signal is not robust. This problem is countered by implementing a reference model to predict speed fluctuations with respect to crank angle. This model has the additional benefit that its output may be used to detect periodic fault symptoms in the speed signal, thereby leading to identification of the individual cylinder affected by the fault. A fuzzy rule based system has been developed to diagnose faults based on the load estimations and the residuals obtained from the reference model. Testing the diagnostic system with data from the normal, and two other separate engine fault conditions, resulted in a classification success rate greater than 90 per cent in each case. A further benefit is reported where the combination of evidence from the three sources effectively validates the load estimation, which may then be used to infer faults in other subsystems.


2013 ◽  
Vol 17 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Jovan Doric ◽  
Ivan Klinar

A zero dimensional model has been used to investigate the combustion performance of a four cylinder petrol engine with unconventional piston motion. The main feature of this new spark ignition (SI) engine concept is the realization of quasi-constant volume (QCV) during combustion process. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of internal combustion (IC) engines. These advantages over standard engine are achieved through synthesis of unconventional piston mechanism. The numerical calculation was performed for several cases of different piston mechanism parameters, compression ratio and engine speed. Calculated efficiency and power diagrams are plotted and compared with performance of ordinary SI engine. The results show that combustion during quasi-constant volume has significant impact on improvement of efficiency. The main aim of this paper is to find a proper kinematics parameter of unconventional piston mechanism for most efficient heat addition in SI engines.


Sign in / Sign up

Export Citation Format

Share Document