Nitric oxide and soot emissions determined from a multi-zone thermodynamic direct-injection diesel engine combustion model

2012 ◽  
Vol 15 (2) ◽  
pp. 135-152 ◽  
Author(s):  
X. Xue ◽  
J. A. Caton
2002 ◽  
Vol 124 (4) ◽  
pp. 1042-1052 ◽  
Author(s):  
C. Hergart ◽  
N. Peters

Capturing the physics related to the processes occurring in the two-phase flow of a direct-injection diesel engine requires a highly sophisticated modeling approach. The representative interactive flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion, and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as for the soot particle growth and oxidation, without imposing any significant computational penalty. This study addresses the part load soot underprediction of the model, which has been observed in previous investigations. By assigning flamelets, which are exposed to the walls of the combustion chamber, with heat losses calculated in a computational fluid dynamics (CFD) code, predictions of the soot emissions in a small-bore direct-injection diesel engine are substationally improved. It is concluded that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.


Author(s):  
P S Mehta ◽  
A K Gupta

A mathematical model for predicting spray–swirl interaction in a direct injection diesel engine combustion chamber is developed using centre-line velocity vector/continuum approach. The model has three-dimensional features in fuel spray motion. The present model responds to the various air swirl, fuel injection and cylinder charge conditions. The predicted results are compared with the analytical and experimental data available from various sources in the two-dimensional case. Very good agreement is achieved over a wide range of data. The three-dimensional predictions are directly possible without any alteration in the computation scheme.


Sign in / Sign up

Export Citation Format

Share Document