(3-28) Measurement and Modeling of Large-Scale Flow Structures and Turbulence in a High-Speed Direct-Injection Diesel Engine((DE-5)Diesel Engine Combustion 5-Heat Transfer and Fluid Flow)

Author(s):  
Paul Miles ◽  
Marcus Megerle ◽  
Volker Sick ◽  
Keith Richards ◽  
Zac Nagel ◽  
...  
1987 ◽  
Vol 109 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. C. Alkidas

The factors influencing premixed burning and the importance of premixed burning on the exhaust emissions from a small high-speed direct-injection diesel engine were investigated. The characteristics of premixed and diffusion burning were examined using a single-zone heat-release analysis. The mass of fuel burned in premixed combustion was found to be linearly related to the product of engine speed and ignition-delay time and to be essentially independent of the total amount of fuel injected. Accordingly, the premixed-burned fraction increased with increasing engine speed, with decreasing fuel-air ratio and with retarding injection timing. The hydrocarbon emissions did not correlate well with the premixed-burned fraction. In contrast, the oxides of nitrogen emissions were found to increase with decreasing premixed-burned fraction, indicating that diffusion burning, and not premixed burning, is the primary source of oxides of nitrogen emissions.


Energy ◽  
2012 ◽  
Vol 43 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Dimitrios C. Rakopoulos ◽  
Constantine D. Rakopoulos ◽  
Evangelos G. Giakoumis ◽  
Athanasios M. Dimaratos

Author(s):  
P S Mehta ◽  
A K Gupta

A mathematical model for predicting spray–swirl interaction in a direct injection diesel engine combustion chamber is developed using centre-line velocity vector/continuum approach. The model has three-dimensional features in fuel spray motion. The present model responds to the various air swirl, fuel injection and cylinder charge conditions. The predicted results are compared with the analytical and experimental data available from various sources in the two-dimensional case. Very good agreement is achieved over a wide range of data. The three-dimensional predictions are directly possible without any alteration in the computation scheme.


Author(s):  
T-G Fang ◽  
R E Coverdill ◽  
C-F F Lee ◽  
R A White

An optically accessible high-speed direct-injection diesel engine was used to study the effects of injection angles on low-sooting combustion. A digital high-speed camera was employed to capture the entire cycle combustion and spray evolution processes under seven operating conditions including post-top-dead centre (TDC) injection and pre-TDC injection strategies. The nitrogen oxide (NO x) emissions were also measured in the exhaust pipe. In-cylinder pressure data and heat release rate calculations were conducted. All the cases show premixed combustion features. For post-TDC injection cases, a large amount of fuel deposition is seen for a narrower-injection-angle tip, i.e. the 70° tip, and ignition is observed near the injector tip in the centre of the bowl, while for a wider-injection-angle tip, namely a 110° tip, ignition occurs near the spray tip in the vicinity of the bowl wall. The combustion flame is near the bowl wall and at the central region of the bowl for the 70° tip. However, the flame is more distributed and centralized for the 110° tip. Longer spray penetration is found for the pre-TDC injection timing cases. Liquid fuel impinges on the bowl wall or on the piston top and a fuel film is formed. Ignition for all the pre-TDC injection cases occur in a distributed way in the piston bowl. Two different combustion modes are observed for the pre-TDC injection cases including a homogeneous bulky combustion flame at earlier crank angles and a heterogeneous film combustion mode with luminous sooting flame at later crank angles. In terms of soot emissions, NO x emissions, and fuel efficiency, results show that the late post-TDC injection strategy gives the best performance.


2001 ◽  
Author(s):  
K. J. Richards ◽  
M. N. Subramaniam ◽  
Rolf D. Reitz ◽  
Ming-Chia Lai ◽  
N. A. Henein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document