Engine test bench feasibility for the study and research of real driving cycles: Pollutant emissions uncertainty characterization

2021 ◽  
pp. 146808742110079
Author(s):  
José Manuel Luján ◽  
Vicente Bermudez ◽  
Benjamín Pla ◽  
Fernando Redondo

The future of Internal Combustion Engines in the automotive sector seems uncertain, to some extent due to the recent changes in type approval regulations. Current regulations have considerably reduced the engine pollutant emissions limits, as well as introduced more demanding testing conditions. The introduction of real driving cycles presented a challenging issue for car manufacturers when homologating their vehicles, since the traditional and undemanding NEDC (New European Driving Cycle) certification cycle has been replaced by sever cycles as WLTC (World Light Duty Test Cycle) and RDE (Real Driving Emissions). This document presents a methodology for implementing a RDE cycle in an engine test bench. Even knowing that the essence of RDE regulation is to assess actual driving conditions, reproducing RDE cycles in a test bench is of great interest, since the controlled and reproducible conditions that can be achieved in a laboratory lead to valuable information to understand engine behavior in real driving conditions, and therefore contribute to engine development. This document applies the most recent European Community regulation and sets the essential steps to carry out a RDE cycle in an engine test bench. Once the WLTC and RDE cycles were implemented, this study analyses the uncertainty and repeatability of the values obtained in successive repetitions of the test, carried out under the same conditions. Uncertainty values are obtained on the most representative parameters of engine operation, as well as pollutant emissions. One of the most relevant contributions of this study is to obtain the uncertainties of type approval pollutant emissions. As an example, the uncertainty obtained by applying the methodology described in this article on nitrogen oxide emissions (NOx), considered one of the most relevant pollutant emissions of diesel engines, has been extremely reduced, obtaining values of 3.13% and 3.9%, respectively for the RDE and WLTC cycles.

2018 ◽  
Vol 21 (5) ◽  
pp. 766-780 ◽  
Author(s):  
Seyed Shahabeddin Alaviyoun ◽  
Masoud Ziabasharhagh

Turbochargers are commonly used in the automotive industry due to their ability to increase the specific power output of internal combustion engines. Heat transfer from the turbine to the compressor can strongly influence the turbocharger performance. Therefore, it is essential to consider heat transfer properties of the turbochargers. Existing heat transfer models are generally limited to the specific situations on the turbocharger test rig or the engine test bench, which are different to the real conditions of engine operation in a vehicle. Accurate modeling and calculation of the heat transfer require a more precise measurement study. In this research, we evaluate the temperature distribution of the turbocharger walls using an engine test bench and also a vehicle that are both equipped with the same instrumented turbocharger. Thermocouple measurements and thermography pictures were used to determine the temperature distributions of the turbocharger. Different heat transfer phenomena of turbocharger have been measured and analyzed. In addition, the effect of heat transfer on compressor efficiency is investigated. Several tests have been conducted, including a vehicle on a flat surface and also during an uphill climb with a trailer load hitched. The results of vehicle warm-up test show that the compressor housing has a higher temperature gradient in comparison with the engine test bench. The velocity of the air around the turbocharger is a factor that contributed toward the differences between an engine test bench and typical vehicle conditions.


2020 ◽  
Vol 25 (4) ◽  
pp. 598-505
Author(s):  
Jorge Eliécer Duarte Forero ◽  
Miguel Celis Quintero ◽  
Gabriel Hernandez Acosta

This article presents the implementation of a 3.5 kW resistive load bank applied to a four-stroke single-cylinder diesel engine test bench that operates with an alternator.   With this experimental test bench, it is possible to perform mechanical, thermodynamic, and polluting emissions studies in compression-ignited or induced internal combustion engines.   Applying the quantitative research methodology, the design of the electric charging system is carried out. Power control circuits and safety elements are designed for the load back. CAD software is used to design the structure and casing considering anthropometric measurements. Also, finite element analysis (FEA) is incorporated to verify the structural and thermal design criteria.   he implementation of an electrical and instrumentation acceleration system for sensing power and torque in low-displacement engines showed a measurement error of less than 1%. Similarly, the FEA allowed to quantify the maximum efforts and guarantee a safety factor above 5.   With the characterization of the implemented sensors, a correlation coefficient of up to 99.97% was achieved. The power measurement displayed an error lower than 3%, which leads to a high characterization capacity of any thermal machine with equal power or less than the designed one.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Markus Kiesenhofer

AbstractHybridization of the drive train in commercial vehicles is a key solution toward meeting the strict future requirements to reduce carbon dioxide emissions within the European Union. In order to decrease fleet consumption a large number of different hybrid systems are already available in series in the passenger car sector. Due to the cheap and powerful 48 volt hybrid components and the lower hazard potential compared to high voltage, future commercial vehicles could also benefit from the 48V technology and contribute to lower fleet fuel consumption. Therefore, a complete 48V mild hybrid system was built on the diesel engine test bench as part of a research project. This paper highlights the utilization of a powerful 48V-motor to propel the coolant pump on a diesel engine of the 13-L commercial vehicle class. Three different drive variants of the coolant pump were implemented and measured on the diesel engine test bench. MATLAB®/Simulink®-simulations were conducted to assess the possible fuel savings in three different driving cycles. This paper provides a summary and interpretation of the measurement and simulation results. The simulation studies predict a decrease of fuel consumption of up to 0.94%. Furthermore, the additional advantages of electrified coolant pumps based on 48V are discussed.


Akustika ◽  
2021 ◽  
pp. 168
Author(s):  
Igor Deryabin ◽  
Aleksandr Krasnov ◽  
Larisa Gorina

When conducting acoustic researches and finishing works on combustion engines specialized technological equipment and tools mounted mainly in anechoic chambers are used. In order to ensure the high quality and objectivity of the research results of the sound fields produced by the research object it is crucial to achieve a sufficiently low parasitic background noise produced by technological equipment and tools of an engine test bench. The source of a high background noise re-emited to the anechoic chambers interior is structural vibrations of the solid objects of load carrying and flatsheet box-type structures of the bench. The article considers tested technical methods of improving vibroacoustics of load carrying and envelope structures of the engine test bench, which is in startup, commissioning and preliminary operation phase in the research center of a car manufacturer. Therewith there was a requirement to prevent any fundamental changes of the bench original basic construction, in order to minimize potential material and financial expenses for its reengineering process. Tested design solutions allow to reduce the level of parasitic noise disturbances, produced directly by the bench equipment in an anechoic chamber, up to 12 dBA.


Author(s):  
Sebastian Lachenmaier ◽  
L. Cross ◽  
C. Ferrara ◽  
A. Greis ◽  
M. Wüst ◽  
...  

2013 ◽  
Vol 13 (16) ◽  
pp. 3175-3181
Author(s):  
X.F. Lv ◽  
Q. Gao ◽  
Y.Q. Luo ◽  
P. Luo

2013 ◽  
Vol 6 (2) ◽  
pp. 1293-1299 ◽  
Author(s):  
David Bogema ◽  
Andreas Schuhmacher ◽  
Gary Newton ◽  
Frederick Vanhaaften ◽  
Takeshi Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document