scholarly journals Levels of NT-proBNP, markers of low-grade inflammation, and endothelial dysfunction during spironolactone treatment in patients with diabetic kidney disease

2012 ◽  
Vol 14 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Stine E Nielsen ◽  
Katrine J Schjoedt ◽  
Kasper Rossing ◽  
Frederik Persson ◽  
Casper G Schalkwijk ◽  
...  
2020 ◽  
Vol 13 (12) ◽  
pp. 452
Author(s):  
Sanna Lehtonen

Metformin is the most commonly prescribed drug for treating type 2 diabetes mellitus (T2D). Its mechanisms of action have been under extensive investigation, revealing that it has multiple cellular targets, either direct or indirect ones, via which it regulates numerous cellular pathways. Diabetic kidney disease (DKD), the serious complication of T2D, develops in up to 50% of the individuals with T2D. Various mechanisms contribute to the development of DKD, including hyperglycaemia, dyslipidemia, oxidative stress, chronic low-grade inflammation, altered autophagic activity and insulin resistance, among others. Metformin has been shown to affect these pathways, and thus, it could slow down or prevent the progression of DKD. Despite several animal studies demonstrating the renoprotective effects of metformin, there is no concrete evidence in clinical settings. This review summarizes the renoprotective effects of metformin in experimental settings. Special emphasis is on the effects of metformin on podocytes, the glomerular epithelial cells that are central in maintaining the glomerular ultrafiltration function.


Kidney360 ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 292-299
Author(s):  
David J. Leehey

Diabetic kidney disease (DKD) is the most common cause of ESKD in the United States and worldwide. Current treatment for DKD includes strict glycemic control and normalization of BP with renin-angiotensin-aldosterone system (RAAS) blockade. Although RAAS blockers slow progression of disease, they do not generally prevent ESKD and none of the studies with these agents in DKD included patients who were nonproteinuric, which make up an increasingly large percentage of patients with diabetes now seen in clinical practice. Recent studies with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown beneficial renal effects, and the benefits of SGLT2 inhibitors likely extend to patients who are nonproteinuric. However, there remains a need to develop new therapies for DKD, particularly in those patients with advanced disease. A role of chronic low-grade inflammation in microvascular complications in patients with diabetes has now been widely accepted. Large clinical trials are being carried out with experimental agents such as bardoxolone and selonsertib that target inflammation and oxidative stress. The Food and Drug Administration–approved, nonspecific phosphodiesterase inhibitor pentoxifylline (PTX) has been shown to have anti-inflammatory effects in both animal and human studies by inhibiting the production of proinflammatory cytokines. Small randomized clinical trials and meta-analyses indicate that PTX may have therapeutic benefits in DKD, raising the possibility that a clinically available drug may be able to be repurposed to treat this disease. A large, multicenter, randomized clinical trial to determine whether this agent can decrease time to ESKD or death is currently being conducted, but results will not be available for several years. At this time, the combination of RAAS blockade plus SGLT2 inhibition is considered standard of care for DKD, but it may be reasonable for clinicians to consider addition of PTX in patients whose disease continues to progress despite optimization of current standard-of-care therapies.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 578 ◽  
Author(s):  
Dou ◽  
Jourde-Chiche

Alterations of renal endothelial cells play a crucial role in the initiation and progression of diabetic kidney disease. High glucose per se, as well as glucose by-products, induce endothelial dysfunction in both large vessels and the microvasculature. Toxic glucose by-products include advanced glycation end products (AGEs), a group of modified proteins and/or lipids that become glycated after exposure to sugars, and glucose metabolites produced via the polyol pathway. These glucose-related endothelio-toxins notably induce an alteration of the glomerular filtration barrier by increasing the permeability of glomerular endothelial cells, altering endothelial glycocalyx, and finally, inducing endothelial cell apoptosis. The glomerular endothelial dysfunction results in albuminuria. In addition, high glucose and by-products impair the endothelial repair capacities by reducing the number and function of endothelial progenitor cells. In this review, we summarize the mechanisms of renal endothelial toxicity of high glucose/glucose by-products, which encompass changes in synthesis of growth factors like TGF-β and VEGF, induction of oxidative stress and inflammation, and reduction of NO bioavailability. We finally present potential therapies to reduce endothelial dysfunction in diabetic kidney disease.


KIDNEYS ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 11-17
Author(s):  
A.I. Gozhenko ◽  
H.S. Kuznetsova ◽  
K.S. Kuznetsova ◽  
S.H. Kuznyetsov ◽  
T.M. Byts

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1126-P
Author(s):  
HIDDO LAMBERS. HEERSPINK ◽  
PAUL PERCO ◽  
JOHANNES LEIERER ◽  
MICHAEL K. HANSEN ◽  
ANDREAS HEINZEL ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 526-P
Author(s):  
MARIANA E. GUADALUPE ◽  
GRACIELA B. ALVAREZ CONDO ◽  
FANNY E. VERA LORENTI ◽  
BETTY J. PAZMIÑO GOMEZ ◽  
EDGAR I. RODAS NEIRA ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 443-P
Author(s):  
YOSHINORI KAKUTANI ◽  
MASANORI EMOTO ◽  
YUKO YAMAZAKI ◽  
KOKA MOTOYAMA ◽  
TOMOAKI MORIOKA ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 539-P
Author(s):  
YOSHINORI KAKUTANI ◽  
MASANORI EMOTO ◽  
KATSUHITO MORI ◽  
YUKO YAMAZAKI ◽  
AKINOBU OCHI ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 236-OR
Author(s):  
OFRI MOSENZON ◽  
STEPHEN D. WIVIOTT ◽  
THOMAS A. ZELNIKER ◽  
HIDDO L. HEERSPINK ◽  
JAMIE P. DWYER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document