Amyloid β Protein Deposition in Osteopetrotic (op/op) Mice Is Reduced by Injections of Macrophage Colony Stimulating Factor

2005 ◽  
Vol 33 (6) ◽  
pp. 654-660 ◽  
Author(s):  
T Kawata ◽  
K Tsutsui ◽  
S Kohno ◽  
M Kaku ◽  
T Fujita ◽  
...  

The deposition of amyloid β (Aβ) protein is a neuropathological change that characterizes Alzheimer's disease. Animals with the osteopetrosis (op/op) mutation suffer from a general skeletal sclerosis, a significantly reduced number of macrophages and osteoclasts in various tissues, and have no systemic macrophage colony stimulating factor (M-CSF). This study examined the effect that M-CSF injections had on Aβ deposition and microglial cell distribution in the brains of normal and op/op mice. Aβ-positive plaques were detected in the cerebral cortex of op/op mice, but not in normal mice. M-CSF reduced the numbers of Aβ-positive plaques in op/op mice. The microglial cell population was reduced in op/op mice compared with normal mice, and M-CSF increased the numbers to 65.8% of that observed in normal mice. Our results suggest that a clearer understanding of the role that microglial cells play in Aβ deposition may help determine the mechanisms involved in the pathogenesis of Alzheimer's disease.

2016 ◽  
Vol 36 (11) ◽  
pp. 1978-1991 ◽  
Author(s):  
De S Shang ◽  
Yi M Yang ◽  
Hu Zhang ◽  
Li Tian ◽  
Jiu S Jiang ◽  
...  

Although tight junctions between human brain microvascular endothelial cells in the blood–brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer’s disease, peripheral blood monocytes can “open” these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer’s disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer’s disease model mice. Our results suggest that in Alzheimer’s disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood–brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood–brain barrier and into the brain. CSF2RB might be useful as an Alzheimer’s disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer’s disease pathogenesis.


2018 ◽  
Vol 319 ◽  
pp. 80-92 ◽  
Author(s):  
Tomomi Kiyota ◽  
Jatin Machhi ◽  
Yaman Lu ◽  
Bhagyalaxmi Dyavarshetty ◽  
Maryam Nemati ◽  
...  

Author(s):  
Dennis J. Selkoe ◽  
Christian Haass ◽  
Michael Schlossmacher ◽  
Albert Hung ◽  
Martin Citron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document