scholarly journals Multi-scale analysis of linear data in a two-dimensional space

2013 ◽  
Vol 13 (3) ◽  
pp. 248-265 ◽  
Author(s):  
Yi Qiang ◽  
Seyed H Chavoshi ◽  
Steven Logghe ◽  
Philippe De Maeyer ◽  
Nico Van de Weghe

Many disciplines are faced with the problem of handling time-series data. This study introduces an innovative visual representation for time series, namely the continuous triangular model. In the continuous triangular model, all subintervals of a time series can be represented in a two-dimensional continuous field, where every point represents a subinterval of the time series, and the value at the point is derived through a certain function (e.g. average or summation) of the time series within the subinterval. The continuous triangular model thus provides an explicit overview of time series at all different scales. In addition to time series, the continuous triangular model can be applied to a broader sense of linear data, such as traffic along a road. This study shows how the continuous triangular model can facilitate the visual analysis of different types of linear data. We also show how the coordinate interval space in the continuous triangular model can support the analysis of multiple time series through spatial analysis methods, including map algebra and cartographic modelling. Real-world datasets and scenarios are employed to demonstrate the usefulness of this approach.

2021 ◽  
pp. 147387162110386
Author(s):  
Zhenge Zhao ◽  
Danilo Motta ◽  
Matthew Berger ◽  
Joshua A Levine ◽  
Ismail B Kuzucu ◽  
...  

Civil engineers use numerical simulations of a building’s responses to seismic forces to understand the nature of building failures, the limitations of building codes, and how to determine the latter to prevent the former. Such simulations generate large ensembles of multivariate, multiattribute time series. Comprehensive understanding of this data requires techniques that support the multivariate nature of the time series and can compare behaviors that are both periodic and non-periodic across multiple time scales and multiple time series themselves. In this paper, we present a novel technique to extract such patterns from time series generated from simulations of seismic responses. The core of our approach is the use of topic modeling, where topics correspond to interpretable and discriminative features of the earthquakes. We transform the raw time series data into a time series of topics, and use this visual summary to compare temporal patterns in earthquakes, query earthquakes via the topics across arbitrary time scales, and enable details on demand by linking the topic visualization with the original earthquake data. We show, through a surrogate task and an expert study, that this technique allows analysts to more easily identify recurring patterns in such time series. By integrating this technique in a prototype system, we show how it enables novel forms of visual interaction.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


2005 ◽  
Vol 33 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Sarika Mehra ◽  
Wei Lian ◽  
Karthik P. Jayapal ◽  
Salim P. Charaniya ◽  
David H. Sherman ◽  
...  

Author(s):  
Michael Eichler

I review the use of the concept of Granger causality for causal inference from time-series data. First, I give a theoretical justification by relating the concept to other theoretical causality measures. Second, I outline possible problems with spurious causality and approaches to tackle these problems. Finally, I sketch an identification algorithm that learns causal time-series structures in the presence of latent variables. The description of the algorithm is non-technical and thus accessible to applied scientists who are interested in adopting the method.


Sign in / Sign up

Export Citation Format

Share Document