Hotspot: Making computer vision more effective for human video surveillance

2016 ◽  
Vol 15 (4) ◽  
pp. 273-285 ◽  
Author(s):  
Cuong Nguyen ◽  
Wu-chi Feng ◽  
Feng Liu

Studies have shown that the human capability of monitoring multiple surveillance videos is limited. Computer vision techniques have been developed to detect abnormal events to support human video surveillance; however, their results are often unreliable, thus distracting surveillance operators and making them miss important events. This article presents Hotspot as a surveillance video visualization system that can effectively leverage noisy computer vision techniques to support human video surveillance. Hotspot consists of two views: a designated focus view to summarize videos with detected events and a video-bank view surrounding the focus view to display source surveillance videos. The focus view allows an operator to quickly dismiss false alarms and focus on true alarms. The video-bank view allows for extended human video analysis after an important event is detected. Hotspot further provides visual links to assist quick attention switch from the focus view to the video-bank view. Our experiments show that Hotspot can effectively integrate noisy, automatic computer vision detection results and better support human video surveillance tasks than the baseline video surveillance with no or only basic computer vision support.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2958
Author(s):  
Antonio Carlos Cob-Parro ◽  
Cristina Losada-Gutiérrez ◽  
Marta Marrón-Romera ◽  
Alfredo Gardel-Vicente ◽  
Ignacio Bravo-Muñoz

New processing methods based on artificial intelligence (AI) and deep learning are replacing traditional computer vision algorithms. The more advanced systems can process huge amounts of data in large computing facilities. In contrast, this paper presents a smart video surveillance system executing AI algorithms in low power consumption embedded devices. The computer vision algorithm, typical for surveillance applications, aims to detect, count and track people’s movements in the area. This application requires a distributed smart camera system. The proposed AI application allows detecting people in the surveillance area using a MobileNet-SSD architecture. In addition, using a robust Kalman filter bank, the algorithm can keep track of people in the video also providing people counting information. The detection results are excellent considering the constraints imposed on the process. The selected architecture for the edge node is based on a UpSquared2 device that includes a vision processor unit (VPU) capable of accelerating the AI CNN inference. The results section provides information about the image processing time when multiple video cameras are connected to the same edge node, people detection precision and recall curves, and the energy consumption of the system. The discussion of results shows the usefulness of deploying this smart camera node throughout a distributed surveillance system.



2019 ◽  
Vol 9 (10) ◽  
pp. 2003 ◽  
Author(s):  
Tung-Ming Pan ◽  
Kuo-Chin Fan ◽  
Yuan-Kai Wang

Intelligent analysis of surveillance videos over networks requires high recognition accuracy by analyzing good-quality videos that however introduce significant bandwidth requirement. Degraded video quality because of high object dynamics under wireless video transmission induces more critical issues to the success of smart video surveillance. In this paper, an object-based source coding method is proposed to preserve constant quality of video streaming over wireless networks. The inverse relationship between video quality and object dynamics (i.e., decreasing video quality due to the occurrence of large and fast-moving objects) is characterized statistically as a linear model. A regression algorithm that uses robust M-estimator statistics is proposed to construct the linear model with respect to different bitrates. The linear model is applied to predict the bitrate increment required to enhance video quality. A simulated wireless environment is set up to verify the proposed method under different wireless situations. Experiments with real surveillance videos of a variety of object dynamics are conducted to evaluate the performance of the method. Experimental results demonstrate significant improvement of streaming videos relative to both visual and quantitative aspects.





2021 ◽  
Author(s):  
Daniele Berardini ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Sara Moccia

Abstract Nowadays, video surveillance has a crucial role. Analyzing surveillance videos is, however, a time consuming and tiresome procedure. In the last years, artificial intelligence paved the way for automatic and accurate surveillance-video analysis. In parallel to the development of artificial-intelligence methodologies, edge computing is becoming an active field of research with the final goal to provide cost-effective and real time deployment of the developed methodologies. In this work, we present an edge artificial intelligence application to video surveillance. Our approach relies on a set of four IP cameras, which acquire video frames that are processed on the edge using the NVIDIA® Jetson Nano. A state-of-the-art deep-learning model, called Single Shot multibox Detector (SSD) MobileNetV2 network, is used to perform object and people detection in real-time. The proposed infrastructure obtained an inference speed of ∼10.0 Frames per Second (FPS) for each parallel video stream. These results prompt the possibility of translating our work into a real word scenario. The integration of the presented application into a wider monitoring system with a central unit could bring benefits to the overall infrastructure. Indeed our application could send only video-related high-level information to the central unit, allowing it to combine information with data coming from other sensing devices without unuseful data overload. This would ensure a fast response in case of emergency or detected anomalies. We hope this work will contribute to stimulate the research in the field of edge artificial intelligence for video surveillance.



High definition television is becoming ever more popular, opening up the market to new high-definition technologies. Image quality and color fidelity have experienced improvements faster than ever. The video surveillance market has been affected by high definition television demand. Since video surveillance calls for large amounts of image data, high-quality video frame rates are generally compromised. However, a network camera that conforms to high definition television standards shows good performance in high frame rate, resolution, and color fidelity. High quality network cameras are a good choice for surveillance video quality.



2013 ◽  
pp. 1093-1110
Author(s):  
Sreela Sasi

Computer vision plays a significant role in a wide range of homeland security applications. The homeland security applications include: port security (cargo inspection), facility security (embassy, power plant, bank), and surveillance (military or civilian), et cetera. Video surveillance cameras are placed in offices, hospitals, banks, ports, parking lots, parks, stadiums, malls, train stations, airports, et cetera. The challenge is not for acquiring surveillance data from these video cameras, but for identifying what is valuable, what can be ignored, and what demands immediate attention. Computer vision systems attempt to construct meaningful and explicit descriptions of the environment or scene captured in an image. A few Computer Vision based security applications are presented here for securing building facility, railroad (Objects on railroad, and red signal detection), and roads.



2020 ◽  
Vol 12 (1) ◽  
pp. 39-55
Author(s):  
Hadj Ahmed Bouarara

In recent years, surveillance video has become a familiar phenomenon because it gives us a feeling of greater security, but we are continuously filmed and our privacy is greatly affected. This work deals with the development of a private video surveillance system (PVSS) using regression residual convolutional neural network (RR-CNN) with the goal to propose a new security policy to ensure the privacy of no-dangerous person and prevent crime. The goal is to best meet the interests of all parties: the one who films and the one who is filmed.



Sign in / Sign up

Export Citation Format

Share Document