Numerical simulation of solitary wave interaction with wave wall of breakwater using arbitrary Lagrangian–Eulerian method

Author(s):  
Huan-huan Wang ◽  
Xian-long Jin

The arbitrary Lagrangian–Eulerian method is used to simulate solitary wave interacting with wave wall of a rubble mound breakwater. The Navier–Stokes equations in arbitrary Lagrangian–Eulerian description are solved using operator splitting technique. The penalty-based coupling method is introduced to analyze the coupling of structure and fluid. A piston-type wave maker generating the incident solitary wave is set up in the computational domain. In order to evaluate the numerical model’s performance, a set of experimental studies are carried out in a wave flume using solitary waves at a 1:25 scale. The accuracy of simulation of the solitary wave is verified by comparing with the theoretical value and testing data of the wave surface. Wave transformation, impact and overtopping on the breakwater are simulated in this numerical flume, and the time history of pressure on the wave wall is analyzed. The distributions of maximum impact pressure for solitary waves with different wave heights from the numerical simulations show a good agreement with the experimental results. Based on the dynamic response of the breakwater, the stress distribution and the deformation of the wave wall are discussed. The numerical model can be used as a complementary tool for the design of this kind of structures.

2011 ◽  
Vol 8 (2) ◽  
pp. 10 ◽  
Author(s):  
K. Smida ◽  
H. Lamloumi ◽  
K. Maalel ◽  
Z. Hafsia

 A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process. 


2021 ◽  
Vol 61 (SI) ◽  
pp. 155-162
Author(s):  
Petr Sváček

This paper is interested in the mathematical modelling of the voice production process. The main attention is on the possible closure of the glottis, which is included in the model with the concept of a fictitious porous media and using the Hertz impact force The time dependent computational domain is treated with the aid of the Arbitrary Lagrangian-Eulerian method and the fluid motion is described by the incompressible Navier-Stokes equations coupled to structural dynamics. In order to overcome the instability caused by the dominating convection due to high Reynolds numbers, stabilization procedures are applied and numerically analyzed for a simplified problem. The possible distortion of the computational mesh is considered. Numerical results are shown.


2012 ◽  
Vol 12 (3) ◽  
pp. 789-806 ◽  
Author(s):  
P. Sváček ◽  
J. Horáček

AbstractIn this paper the numerical method for solution of an aeroelastic model describing the interactions of air flow with vocal folds is described. The flow is modelled by the incompressible Navier-Stokes equations spatially discretized with the aid of the stabilized finite element method. The motion of the computational domain is treated with the aid of the Arbitrary Lagrangian Eulerian method. The structure dynamics is replaced by a mechanically equivalent system with the two degrees of freedom governed by a system of ordinary differential equations and discretized in time with the aid of an implicit multistep method and strongly coupled with the flow model. The influence of inlet/outlet boundary conditions is studied and the numerical analysis is performed and compared to the related results from literature.


Author(s):  
Jaromi´r Hora´cˇek ◽  
Miloslav Feistauer ◽  
Petr Sva´cˇek

The contribution deals with the numerical simulation of the flutter of an airfoil with three degrees of freedom (3-DOF) for rotation around an elastic axis, oscillation in the vertical direction and rotation of a flap. The finite element (FE) solution of two-dimensional (2-D) incompressible Navier-Stokes equations is coupled with a system of nonlinear ordinary differential equations describing the airfoil vibrations with large amplitudes taking into account the nonlinear mass matrix. The time-dependent computational domain and a moving grid are treated by the Arbitrary Lagrangian-Eulerian (ALE) method and a suitable stabilization of the FE discretization is applied. The developed method was successfully tested by the classical flutter computation of the critical flutter velocity using NASTRAN program considering the linear model of vibrations and the double-lattice aerodynamic theory. The method was applied to the numerical simulations of the post flutter regime in time domain showing Limit Cycle Oscillations (LCO) due to nonlinearities of the flow model and vibrations with large amplitudes. Numerical experiments were performed for the airfoil NACA 0012 respecting the effect of the air space between the flap and the main airfoil.


Sign in / Sign up

Export Citation Format

Share Document