Three-dimensional multi-patch isogeometric analysis of composite laminates with a discontinuous Galerkin approach

Author(s):  
M Amin Obohat ◽  
Ehsan Tahvilian ◽  
M Erden Yildizdag ◽  
Ahmet Ergin

In this study, a three-dimensional discontinuous Galerkin isogeometric analysis framework is presented for the analysis of composite laminates. Non-uniform rational B-splines are employed as basis functions for both geometric and computational implementations. From a practical point of view, modeling with multiple non-uniform rational B-spline patches is required in many different applications due to the complexity of computational domains. Then, a special numerical technique is necessary to couple different non-uniform rational B-spline patches to carry out the isogeometric analysis. In this study, therefore, one of the discontinuous Galerkin methods, namely, symmetric interior penalty Galerkin formulation is utilized to deal with multi-patch isogeometric analysis applications. In order to show the applicability of the proposed framework, composite laminates under sinusoidally distributed load with different stacking sequences are studied in the numerical examples. The predicted results are compared with those obtained by the three-dimensional elasticity solutions and various numerical models available in the literature.

1992 ◽  
Vol 59 (2S) ◽  
pp. S166-S175 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The displacements in a laminated composite are represented as products of two sets of unknown functions, one of which is only a function of the thickness coordinate and the other is a function of the in-plane coordinates (i.e., separation of variables approach), and the minimization of the total potential energy is reduced to a sequence of iterative linear problems. Analytical solutions are developed for cross-ply and angle-ply laminated composite rectangular plates. The solution for simply-supported cross-ply plates under sinusoidal transverse load reduces to that of Pagano. Numerical results for stresses and displacements for antisymmetric angle-ply laminates are presented. The three-dimensional elasticity solutions developed are important because they can be used to study the behavior of composite laminates, in addition to serving as reference for approximate solutions by numerical methods and twodimensional theories.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
F. Caputo ◽  
A. De Luca ◽  
A. Greco ◽  
A. Marro ◽  
A. Apicella ◽  
...  

Usually during the design of landing gear, simplified Finite Element (FE) models, based on one-dimensional finite elements (stick model), are used to investigate the in-service reaction forces involving each subcomponent. After that, the design of such subcomponent is carried out through detailed Global/Local FE analyses where, once at time, each component, modelled with three-dimensional finite elements, is assembled into a one-dimensional finite elements based FE model, representing the whole landing gear under the investigated loading conditions. Moreover, the landing gears are usually investigated also under a kinematic point of view, through the multibody (MB) methods, which allow achieving the reaction forces involving each subcomponent in a very short time. However, simplified stick (FE) and MB models introduce several approximations, providing results far from the real behaviour of the landing gear. Therefore, the first goal of this paper consists of assessing the effectiveness of such approaches against a 3D full-FE model. Three numerical models of the main landing gear of a regional airliner have been developed, according to MB, “stick,” and 3D full-FE methods, respectively. The former has been developed by means of ADAMS® software, the other two by means of NASTRAN® software. Once this assessment phase has been carried out, also the Global/Local technique has verified with regard to the results achieved by the 3D full-FE model. Finally, the dynamic behaviour of the landing gear has been investigated both numerically and experimentally. In particular, Magnaghi Aeronautica S.p.A. Company performed the experimental test, consisting of a drop test according to EASA CS 25 regulations. Concerning the 3D full-FE investigation, the analysis has been simulated by means of Ls-Dyna® software. A good level of accuracy has been achieved by all the developed numerical methods.


Author(s):  
M. H. Zaman ◽  
R. E. Baddour

The study of the effects resulting from the interaction of a combined wave-current field with any ocean structure is important for the design and performance evaluation of that structure. The prudent computation of forces exerted by waves and currents is an essential task in the study of the stability of an offshore structure. A study on the loading of an oblique wave and a current field on a fixed vertical slender cylinder in a 3D flow frame is illustrated in Zaman and Baddour (2004). The three dimensional expressions describing the characteristics of the combined wave-current field in terms of mass, momentum and energy flux conservation equations are formulated. The parameters before the interaction of the oblique wave-free uniform current and current-free wave are used to formulate the kinematics of the flow field. These expressions are also employed to formulate and calculate the loads imparted by the wave-current fluid flow on a bottom mounted slender vertical cylinder. In this work a 2D version of the above 3D model called here Model-I has been used for the numerical computations presented in this paper. The second model denoted model-II in the present paper is based on Euler equations. This model is formulated through the vertical integration of the continuity equation and the equations of motions, Zaman et al (1997). A semi-implicit numerical technique is employed for the numerical solution. In the present paper comparisons are made between the results obtained from the 2D version of the above models in finite depth. Both models are then compared with some relevant experimental data. Morison et al equation (1950) is deployed for the load computations in all cases.


1995 ◽  
Vol 62 (4) ◽  
pp. 880-886 ◽  
Author(s):  
K. M. Liew ◽  
K. C. Hung ◽  
M. K. Lim

A procedure is presented for determining the three-dimensional elasticity solutions for free vibration analysis of simply supported thick skew plates. The exact expressions of strain and kinetic energies are derived from linear, small-strain, three-dimensional elasticity theory. To allow the treatment of soft and hard simple support conditions, sets of three-dimensional spatial displacement functions are expressed in terms of unit normals to the edges. By virtue of the three-dimensional elasticity theory, the present method does not require a special treatment for stress singularity at the obtuse corners. This method is also demonstrated to be free from shear locking phenomena. The significant difference in the vibration response of skew plates with soft and hard simple support conditions is highlighted. The influence of skew angle on the eigenvalues of thick skew plate is discussed in the context of the three-dimensional elasticity solutions.


1990 ◽  
Vol 57 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Ahmed K. Noor ◽  
W. Scott Burton

Analytic three-dimensional elasticity solutions are presented for the stress and free vibration problems of multilayered anisotropic plates. The plates are assumed to have rectangular geometry and antisymmetric lamination with respect to the middle plane. A mixed formulation is used with the fundamental unknowns consisting of the six stress components and the three displacement components of the plate. Each of the plate variables is decomposed into symmetric and antisymmetric components in the thickness direction, and is expressed in terms of a double Fourier series in the Cartesian surface coordinates. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of composite plates on the importance of the transverse stress and strain components.


Author(s):  
A Alibeigloo ◽  
M Shakeri

Three-dimensional elasticity solutions have been presented for thick laminated crossply circular cylindrical panel. The panel is under localized patch moment in axial direction and is simply supported at all edges with finite length. Ordinary differential equations with variable coefficients are obtained by means of Fourier series expansion for displacement field and loading in the circumferential and axial directions. Resulting ordinary differential equations are solved using Taylor series. Numerical results are presented for (0/90°) and (0/90/0°) lay-up, and compared with the results for simple form of loading published in literatures.


Sign in / Sign up

Export Citation Format

Share Document