Rubber–rubber blends: A critical review

2019 ◽  
Vol 36 (3) ◽  
pp. 196-242
Author(s):  
Abitha Vayyaprontavida Kaliyathan ◽  
KM Varghese ◽  
A Sreekumaran Nair ◽  
Sabu Thomas

The blending of different rubbers is one of the effective methods to achieve required performance properties in their final products. This article reviews the thermodynamic considerations of rubber–rubber blends and their filled systems. Factors affecting the rubber blend morphology (i.e. distribution mechanism of fillers, curatives and other compounding ingredients) and preparation techniques for rubber–rubber blends emphasizing their advantages and disadvantages are well discussed in this review. Microscopy is the field of interest to all material scientists. In the case of rubber blends, microscopy is an essential tool in order to understand the morphology, that is, size, shape and distribution of phases and filler particles in the rubber–rubber blend. In this review, selected scientific reports based on optical microscopy, electron microscopy and atomic force microscopy in rubber–rubber blends are discussed. Rubber material is a complex macromolecule; it has significant proportion of fillers, processing aids and curing agents; therefore, only a very few studies have been reported on the microscopic aspects of filled rubber–rubber blends. In particular, influence of rubber blend composition, fillers (micro and nano length scales) and processing additives on the morphology of rubber blends systems has not been systematically reviewed and discussed in the scientific literature. Therefore, in the present scenario, this review was thought of, which deals with the essential background to rubber–rubber blends, miscibility and morphological characterization of various rubber blend systems by microscopy. It is very important to add that although there is scattered information on these aspects in the scientific literature, to date a comprehensive review has not been published. The pros, cons, artefacts and the new challenges on the use of microscopy for the characterization of rubber–rubber blends are also discussed here.

1996 ◽  
Vol 440 ◽  
Author(s):  
H. C. Wang ◽  
D. W. Cheong ◽  
J. Kumar ◽  
C. Sung ◽  
S. K. Tripathy

AbstractA soluble, asymmetrically substituted polydiacetylene, poly(BPOD), has been reported to form stable monolayers at the air-water interface by the Langmuir-Blodgett (LB) technique [2]. Preformed polydiacetylene has been deposited onto hydrophobic substrates as multilayers to form second order nonlinear optical thin films. Second harmonic generation was found to increase with the number of layers. From previous atomic force microscopy (AFM) studies backbone orientation along the dipping direction with an interchain spacing of about 5 A° was indicated [2].The film morphology and preferential molecular orientation of these LB films are further investigated by transmission electron microscopy (TEM). A specifically tailored sample preparation method for the ultrathin LB films was used. Multilayer films were deposited on hydrophobic collodion covered glass substrates for this purpose. Electron diffraction was employed to study the crystalline organization of mono and multilayers of LB films as well as cast films.


2014 ◽  
Vol 625 ◽  
pp. 263-266
Author(s):  
Anirban Chakraborty ◽  
Muhammad Moniruzzaman ◽  
Sujan Chowdhury ◽  
Sekhar Bhattacharjee

Extensive research data were published in the last decade on synthesis, characterization and application of AuNP for drug delivery and protein conjugation. Gold nanoparticles were synthesized by the well-known citrate reduction (Turkevitch) method. Precursor concentrations were measured by UV-Vis spectroscopy and iodometric estimation methods. During reaction surface plasmon resonance (SPR) peaks of the reaction medium decreased from 556.5 nm to 527.2 nm in about 300s. Experimental data on time-concentration profiles of the precursor in the reaction medium were used to calculate pseudo-first order rate constant (0.0178± 0.002 s-1). Atomic Force Microscopy (AFM) was used for morphological characterization of the nanoparticles.


2017 ◽  
Vol 32 (6) ◽  
pp. 813-825 ◽  
Author(s):  
Bipin Gaihre ◽  
Beata Lecka-Czernik ◽  
Ambalangodage C Jayasuriya

This study was aimed at assessing the effects of silica nanopowder incorporation into chitosan-tripolyphosphate microparticles with the ultimate goal of improving their osteogenic properties. The microparticles were prepared by simple coacervation technique and silica nanopowder was added at 0% (C), 2.5% (S1), 5% (S2) and 10% (S3) (w/w) to chitosan. We observed that this simple incorporation of silica nanopowder improved the growth and proliferation of osteoblasts along the surface of the microparticles. In addition, the composite microparticles also showed the increased expression of alkaline phosphatase and osteoblast specific genes. We observed a significant increase ( p < 0.05) in the expression of alkaline phosphatase by the cells growing on all sample groups compared to the control (C) groups at day 14. The morphological characterization of these microparticles through scanning electron microscopy showed that these microparticles were well suited to be used as the injectable scaffolds with perfectly spherical shape and size. The incorporation of silica nanopowder altered the nano-roughness of the microparticles as observed through atomic force microscopy scans with roughness values going down from C to S3. The results in this study, taken together, show the potential of chitosan-tripolyphosphate-silica nanopowder microparticles for improved bone regeneration applications.


2016 ◽  
Vol 165 ◽  
pp. 67-70 ◽  
Author(s):  
Diego P. Oyarzún ◽  
Omar E. Linarez Pérez ◽  
Manuel López Teijelo ◽  
César Zúñiga ◽  
Eduardo Jeraldo ◽  
...  

2006 ◽  
Vol 530-531 ◽  
pp. 72-76 ◽  
Author(s):  
M.C.E. Bandeira ◽  
J.A. Crayston ◽  
César V. Franco

The characterization of poly-{trans-[RuCl2(vpy)4]}films, deposited on Nd-Fe-B magnets and on Pt, Au and Glassy Carbon (GC) electrodes, produced in the present work were carried out by several in situ and extra situ techniques, aiming by the understanding of film structure improve its use as corrosion protection coating and/or electrocatalyst. Cyclic Voltammetry (CV) was used to estimate the surface coverage, film stability and the surface redox potential of films produced at different conditions. By Chronocoulometry films diffusion coefficient (Dct) were evaluated. Film morphology was studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Chemical composition analyses were carried out by Energy Dispersive Spectroscopy (EDS), X-ray Photonelectron Spectroscopy (XPS) and Raman Spectroscopy. The results indicated that the film structure is similar to the Ru complex in solution. Films Dct is limited by the electron transfer rate between Ru metallic centers. Films on Nd-Fe-B were composed by Ru3+ whereas on Pt by Ru2+.


Author(s):  
Ma. Cristina Castañón Bautista ◽  
Abelardo Alcaráz Santillán ◽  
José Chávez Carvayar ◽  
Gerardo Cesar Díaz Trujillo

Sign in / Sign up

Export Citation Format

Share Document