Tactile Spatial Guidance for Collision Avoidance in NextGen Flight Operations

Author(s):  
Julie C. Prinet ◽  
Yuzhi Wan ◽  
Nadine Sarter

Future aviation operations will require pilots to assume new tasks, such as self-separation. Tactile displays are a promising means of supporting this task. They are well suited for presenting spatial information and offload the heavily taxed visual and auditory channels. This experiment assessed the effectiveness of tactile spatial alerts for notifying pilots of an aircraft intruding on their flight path during Closely Spaced Parallel Approaches. Two alerting strategies (single-stage vs. graded) and two alert types (status vs. command) were compared. 19 pilots had to fly a series of approaches, detect tactile alerts and perform evasive maneuvers. The detection rate for tactile alerts was 100%. Graded and status alerts led to the highest response accuracy (100% and 98%, respectively). Response times were faster for command alerts and during manual flight. These results indicate that tactile displays are effective for conveying spatial information and can help prevent collisions in future aviation operations.

2018 ◽  
Vol 93 (1-2) ◽  
pp. 193-211 ◽  
Author(s):  
Egidio D’Amato ◽  
Massimiliano Mattei ◽  
Immacolata Notaro

Author(s):  
Rajat Verma ◽  
Ramin Saedi ◽  
Ali Zockaie ◽  
Timothy J. Gates

Winter maintenance trucks (WMTs) often operate at lower speeds during inclement weather and roadway conditions, creating potential safety issues for motorists following close behind. In this study, a new prototype radar-based rear-end collision avoidance and mitigation system (CAMS) was tested to assess its impact on the behavior of drivers following WMTs. The system is designed to flash an auxiliary rear-facing warning light upon detection of a vehicle encroaching within an unsafe relative headway with the rear of the WMT. A series of field evaluations was performed during actual winter maintenance operations to assess the effectiveness of the system compared with normal operating conditions (i.e., without the CAMS warning light) toward improving driver behavior related to rear-end crash risk. Specifically, two measures were assessed: (a) rate of vehicles encroaching beyond a safe time headway threshold to the rear of the WMT, and (b) the reaction–response time of drivers. Classification and regression tree models were created for identifying the relevant factors influential in determining the change in driver response. The results indicate that this warning light was effective in reducing the likelihood of the subject drivers crossing beyond a relative headway of 4.5 s. It was also effective in reducing the reaction and response times of the drivers by 0.83 and 0.55 s (36% and 20% reduction), respectively. Although the results were encouraging, additional field testing is recommended before conclusions are drawn regarding the traffic safety impacts of the system.


1979 ◽  
Vol 23 (1) ◽  
pp. 70-74
Author(s):  
Daniel W. Dodson ◽  
Nicholas L. Shields

Individual Spacelab experimenters are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware ware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.


Author(s):  
Qiqian Zhang ◽  
Weiwei Xu ◽  
Honghai Zhang ◽  
Han Li

To plan the path for UAV flying in the complex, dense and irregular obstacles environment, this paper proposed an obstacle collision-avoidance detection model and designed an UAV path planning algorithm based on irregular obstacles collision-avoidance detection (IOCAD), which includes irregular obstacles pretreatment method. The proposed method uses the grid method to model the environment. Rough set theory and convexity filling are used to pretreat the obstacles, and the ray method is used to select the available points. The intersection detection and the distance detection are held for the obstacle to the flight path. The objective function minimizes the distance from the obstacle to the flight path to get planned paths. The simulation results show that the proposed method can effectively plan the paths with the constraints of the assumed environment and UAV performances. It is shown that the performance of the proposed method is sensitive to the grid length and safety distance. The optimized values for the grid length and safety distance are 0.5 km and 0.4 km respectively.


2018 ◽  
Vol 30 (9) ◽  
pp. 2384-2417 ◽  
Author(s):  
M. B. Milde ◽  
O. J. N. Bertrand ◽  
H. Ramachandran ◽  
M. Egelhaaf ◽  
E. Chicca

Apparent motion of the surroundings on an agent's retina can be used to navigate through cluttered environments, avoid collisions with obstacles, or track targets of interest. The pattern of apparent motion of objects, (i.e., the optic flow), contains spatial information about the surrounding environment. For a small, fast-moving agent, as used in search and rescue missions, it is crucial to estimate the distance to close-by objects to avoid collisions quickly. This estimation cannot be done by conventional methods, such as frame-based optic flow estimation, given the size, power, and latency constraints of the necessary hardware. A practical alternative makes use of event-based vision sensors. Contrary to the frame-based approach, they produce so-called events only when there are changes in the visual scene. We propose a novel asynchronous circuit, the spiking elementary motion detector (sEMD), composed of a single silicon neuron and synapse, to detect elementary motion from an event-based vision sensor. The sEMD encodes the time an object's image needs to travel across the retina into a burst of spikes. The number of spikes within the burst is proportional to the speed of events across the retina. A fast but imprecise estimate of the time-to-travel can already be obtained from the first two spikes of a burst and refined by subsequent interspike intervals. The latter encoding scheme is possible due to an adaptive nonlinear synaptic efficacy scaling. We show that the sEMD can be used to compute a collision avoidance direction in the context of robotic navigation in a cluttered outdoor environment and compared the collision avoidance direction to a frame-based algorithm. The proposed computational principle constitutes a generic spiking temporal correlation detector that can be applied to other sensory modalities (e.g., sound localization), and it provides a novel perspective to gating information in spiking neural networks.


1993 ◽  
Vol 183 (1) ◽  
pp. 35-60 ◽  
Author(s):  
R. M. Robertson ◽  
A. G. Johnson

1. Obstacles approaching in the flight path trigger postural and wing kinematic adjustments in tethered flying locusts. We sought to confirm that these behaviours were steering behaviours by measuring the changes in the flight forces associated with their execution. We also investigated the coordination of these behaviours in the execution of collision avoidance manoeuvres and the effect of speed or size of the obstacle on the timing and magnitude of the response. 2. Locusts were tethered and suspended in a wind tunnel from orthogonally arranged leaf springs mounted with strain gauges. Lift and yaw torque could be monitored unambiguously. We also monitored a forward translation force which combined pitch and thrust. During flight, the locusts were videotaped from behind while targets of different sizes (5 cmx5 cm, 7 cmx7 cm, 9 cmx9cm, 11 cmx11 cm) were transported towards the head at different speeds (1, 2, 3 or 4 m s-1). 3. Angular asymmetry of the forewings during the downstroke with the right forewing high, and abdomen and hindleg movement to the left, were temporally associated with an increase in yaw torque to the left. With the left forewing high, abdomen and hindleg movement to the right were temporally associated with a decrease in yaw torque to the left. Obstacle avoidance behaviours could be associated with either an increase or a decrease in the pitch/thrust component. 4. Leg, abdomen and wingbeat alterations in response to the approach of an obstacle were independent but tightly coordinated. Slower approaches increased the magnitude of the responses. However, the size of the obstacle had no effect on the magnitude of the response. Slower and larger targets generated earlier reactions (i.e. locusts reacted when the targets were further from the head). 5. We conclude that the behaviours we have described were steering behaviours which would have directed the animal around an obstacle in its flight path, and that there were at least two strategies for collision avoidance associated with slowing or speeding flight. Leg, abdomen and wingbeat alterations formed a coherent avoidance response, the magnitude of which was dependent upon the time available for it to develop. We further conclude that the manoeuvre was not initiated at a constant time to collision and we propose that the avoidance strategy was to initiate the manoeuvre when the targets subtended more than 10 s in the insect's field of view.


1992 ◽  
Vol 163 (1) ◽  
pp. 231-258 ◽  
Author(s):  
R. MELDRUM ROBERTSON ◽  
DAVID N. REYE

1. Flying locusts will try to avoid colliding with objects directly in their flight path. This study investigated the wing movements and behaviour patterns associated with collision avoidance. 2. Tethered locusts were flown in a wind tunnel. Targets were transported at different speeds either directly towards the head of the animal or to one side of the midline but parallel to it. Changes in the form of the wingbeat for each of the wings were monitored using either a video camera or a high-speed ciné camera. 3. Animals attempted to avoid an impending collision by making movements interpreted here as (a) increasing lift to fly over the object, (b) gliding and extending the forelegs to land on the object, and (c) steering to one side of the object. Steering was monitored by observation of abdominal movements. 4. Steering to one side of an approaching target was reliably associated with an earlier and more pronounced pronation of the wings on the inside of the turn. Also, in the middle of the downstroke, the forewings were markedly asymmetrical. On the outside of the turn, the forewing was more elevated and separate from the hindwing. On the inside of the turn, the forewing was more depressed and often came down in conjunction with, or in advance of, the hindwing on that side. 5. The forewing asymmetry correlated with the position of the target such that most attempted turns were in the direction that would take the animal around the closest edge. High-speed cinematography showed that the asymmetry was caused both by changes in the timing of the two wings and by changes in the angular ranges of the wingbeats. 6. We propose that these changes in the form and timing of the wingbeats are likely to have swung the flight force vector around the long axis of the body to produce a banked turn around the closest edge of the object.


Sign in / Sign up

Export Citation Format

Share Document