Muscle Strength Assessment from the EMG Frequency Spectrum

1987 ◽  
Vol 31 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Eui S. Jung

Assessment of a worker's strength is of great interest when evaluating the worker's ability to safely perform a job. Many previous studies have shown that surface electromyogram EMG amplitudes correlate well with muscle force. The present study furthered this concept by using EMG power spectra to achieve a quantified representation of true strength capability. Two groups of male subjects performed isometric elbow flexions while EMG was obtained from the right belly of biceps brachii. One group exercised their arms regularly while the other not. Six different levels of graded maximum voluntary contraction (%MVC) were selected to examine the relations between muscle tension and the mean power frequency (MPF) resulting from EMG power spectra. Resultant MPF's ranged between 50Hz and 70Hz in agreement with previous research results. Two-way ANOVA showed that, in the trained group, a significant increase in the MPF was found at near maximum contractions, whereas the other group failed to show any difference. Further analysis revealed that this increase in MPF was mainly caused by the power increase in the higher bandwidth (70—100Hz). A significant variation between subjects in both groups was also observed.

2021 ◽  
Vol 11 (6) ◽  
pp. 2861
Author(s):  
Chang-ok Cho ◽  
Jin-Hyoung Jeong ◽  
Yun-jeong Kim ◽  
Jee Hun Jang ◽  
Sang-Sik Lee ◽  
...  

At relatively low effort level tasks, surface electromyogram (sEMG) spectral parameters have demonstrated an inconsistent ability to monitor localized muscle fatigue and predict endurance capacity. The main purpose of this study was to assess the potential of the endurance time (Tend) prediction using logarithmic parameters compared to raw data. Ten healthy subjects performed five sets of voluntary isotonic contractions until their exhaustion at 20% of their maximum voluntary contraction (MVC) level. We extracted five sEMG spectral parameters namely the power in the low frequency band (LFB), the mean power frequency (MPF), the high-to-low ratio between two frequency bands (H/L-FB), the Dimitrov spectral index (DSI), and the high-to-low ratio between two spectral moments (H/L-SM), and then converted them to logarithms. Changes in these ten parameters were monitored using area ratio and linear regressive slope as statistical predictors and estimating from onset at every 10% of Tend. Significant correlations (r > 0.5) were found between log(Tend) and the linear regressive slopes in the logarithmic H/L-SM at every 10% of Tend. In conclusion, logarithmic parameters can be used to describe changes in the fatigue content of sEMG and can be employed as a better predictor of Tend in comparison to the raw parameters.


1986 ◽  
Vol 60 (4) ◽  
pp. 1179-1185 ◽  
Author(s):  
T. Moritani ◽  
M. Muro ◽  
A. Nagata

Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.


2004 ◽  
Vol 13 (4) ◽  
pp. 287-299 ◽  
Author(s):  
Eiji Yamada ◽  
Takashi Kusaka ◽  
Satoshi Tanaka ◽  
Satoshi Mori ◽  
Hiromichi Norimatsu ◽  
...  

Objective:To investigate changes in motor-unit activity and muscle oxygenation (MO) during isometric contraction with and without vascular occlusion using surface electromyography (EMG) and near-infrared spectroscopy.Design and Setting:MO and EMG of the right vastus medialis muscle were measured during isometric contraction at 30%, 50%, and 70% maximal voluntary contraction (MVC), with and without vascular occlusion.Participants:6 healthy men.Results:Integrated EMG (IEMG) and mean power frequency were significantly higher with vascular occlusion at 30% and 50% MVC. MO reduction at each load was significantly lower with vascular occlusion. A significant positive correlation was found between IEMG and changes in MO level under both conditions.Conclusions:These results suggest that oxygen supply to active muscles was impaired by occlusion and that type II fibers were then preferentially recruited, which suggests that hypertrophy occurs in low-intensity exercise in patients with limitations resulting from advanced age, pain, or postsurgery limitation.


1981 ◽  
Vol 51 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. Hagberg

In nine male volunteers, the endurance time for sustained isometric exercise (right-angle elbow flexion) and dynamic exercise (continuous concentric and eccentric elbow flexions) was measured at different contraction levels. Intermittent isometric exercises were also performed by four of the subjects in whom surface electromyographic elbow flexor recordings were obtained during the three types of exercise. A rapid decrease of the endurance time was seen at contraction levels above 15–20% of the maximum voluntary contraction for both the sustained isometric and dynamic exercise. There were no significant difference between the regression of the endurance time vs. the contraction level for the sustained isometric exercise and that of the dynamic exercise. However, the endurance time was enhanced in the intermittent isometric exercise compared with the sustained isometric exercise. The development of muscle fatigue was well correlated to change of the myoelectric rootmean-square amplitude and the mean power frequency. Differences in exercise did not significantly affect the relation between the time constant of the mean power frequency decrease and the endurance time.


2005 ◽  
Vol 21 (1) ◽  
pp. 96-109 ◽  
Author(s):  
Travis W. Beck ◽  
Terry J. Housh ◽  
Glen O. Johnson ◽  
Joseph P. Weir ◽  
Joel T. Cramer ◽  
...  

This study compared the patterns of mechanomyographic (MMG) amplitude and mean power frequency vs. torque relationships in men and women during isometric muscle actions of the biceps brachii. Seven men (mean age 23.9 ± 3.5 yrs) and 8 women (mean 21.0 ± 1.3 yrs) performed submaximal to maximal isometric muscle actions of the dominant forearm flexors. Following determination of the isometric maximum voluntary contraction (MVC), they randomly performed submaximal step muscle actions in 10% increments from 10% to 90% MVC. Polynomial regression analyses indicated that the MMG amplitude vs. isometric torque relationship for the men was best fit with a cubic model (R2= 0.983), where MMG amplitude increased slightly from 10% to 20% MVC, increased rapidly from 20% to 80% MVC, and plateaued from 80% to 100% MVC. For the women, MMG amplitude increased linearly (r2= 0.949) from 10% to 100% MVC. Linear models also provided the best fit for the MMG mean power frequency vs. isometric torque relationship in both the men (r2= 0.813) and women (r2= 0.578). The results demonstrated gender differences in the MMG amplitude vs. isometric torque relationship, but similar torque-related patterns for MMG mean power frequency. These findings suggested that the plateau in MMG amplitude at high levels of isometric torque production for the biceps brachii in the men, but not the women, may have been due to greater isometric torque, muscle stiffness, and/or intramuscular fluid pressure in the men, rather than to differences in motor unit activation strategies for modulating isometric torque production.


1966 ◽  
Vol 23 (3_suppl) ◽  
pp. 1108-1110
Author(s):  
Roy Yensen

It is suggested that increases in muscle tension may have occurred just prior to the initiation of the response under conditions of artificially increased mass and that these may have contributed to Whitley's (1966) finding of significantly faster RT under this condition. Following brief discussion of variation in intent to move more or less strongly, it is postulated that the exertion of near maximum voluntary contraction of the prime movers in the initiation of a movement would decrease the RT and that such RT would correlate positively with movement time.


1980 ◽  
Vol 49 (4) ◽  
pp. 649-654 ◽  
Author(s):  
D. Richardson ◽  
R. Shewchuk

The purpose of this study was to examine the separate effects of contraction force and frequency on postexercise hyperemia in the human calf muscle. Nine male subjects were used. Each was seated in a chair with the right foot on a pedal coupled to a load cell and the knee secured. Calf muscle blood flow, measured by a Whitney gauge, was determined before and periodically after 3-pmin bouts of rhythmic isometric plantar-flexor exercise. The contraction frequency was graded from 20 to 50 to 80 contractions/min. The force per contraction was graded from 7.5 to 15 to 30% of maximum voluntary contraction (MVC) of the calf muscle. The average MCV was 502 lb. Peak postexercise blood flow (PBF) increased with either increasing frequency at a given force or increasing force at a given frequency. However, at the higher levels of exercise, PBF tended to plateau at a value of about 50 ml.min-1.100 ml-1. The plateau phase of PBF was associated with a substantial increase in the total volume of postexercise hyperemia. This appeared to be well above any repayment of a blood flow deficit. However, it is not certain that the extra volume represented the repayment of a true blood flow debt.


1996 ◽  
Vol 271 (4) ◽  
pp. H1363-H1369 ◽  
Author(s):  
P. Sundblad ◽  
D. Linnarsson

We hypothesized that the carotid-cardiac baroreflex becomes slowed in conditions with increased sympathetic activity. Changes in heart rate (HR) and blood pressure in response to 10-s trains of 50-mmHg pulses of neck suction (NS) were studied in six male subjects during supine rest, upright rest, isometric arm exercise at 30% of maximum voluntary contraction, and dynamic leg exercise at 100 W in the sitting position. Estimated mean carotid distending pressure increased by approximately 20 mmHg with 50-mmHg, QRS-triggered, pulsatile NS. Repeated NS sequences were performed in each condition. The amplitude of the bradycardic response was highly variable among the subjects and did not differ significantly between conditions, mean values ranging from 0.3 to 0.6 beats.min-1.mmHg-1. In supine rest, the full bradycardic response appeared within < 1 s, i.e., during or immediately after the R-R interval of the first NS pulse. In the other conditions it took significantly longer, 2-3 s or three to seven R-R intervals, for the full HR responses to develop. Our results support the notion that the carotid-cardiac baroreflex in humans becomes slowed under conditions of concurrent sympathetic stimulation.


1998 ◽  
Vol 84 (1) ◽  
pp. 284-291 ◽  
Author(s):  
Sophie J. De Serres ◽  
Roger M. Enoka

De Serres, Sophie J., and Roger M. Enoka. Older adults can maximally activate the biceps brachii muscle by voluntary command. J. Appl. Physiol. 84(1): 284–291, 1998.—Because some of the decline in strength with age may be explained by an impairment of muscle activation, the purpose of this study was to determine the activation level achieved in biceps brachii by older adults during a maximum voluntary contraction (MVC). This capability was assessed with two superimposition techniques: one calculated the activation level that was achieved during an MVC, and the other provided an estimate of the expected MVC force based on extrapolation with submaximal forces. The activation level in biceps brachii was incomplete (<100%) for the young ( n = 16) and elderly ( n = 16) subjects, with the elderly subjects exhibiting the greater deficit. In contrast, there was no difference between the measured and expected MVC forces for either group of subjects, whether the extrapolation involved a third-order polynomial or linearization of the data. Because of the lower signal-to-noise ratio associated with the measurement of activation level and the greater number of measurements that contributed to the estimate of the expected MVC force, we conclude that the older adults were able to achieve complete activation of the biceps brachii muscle during an MVC.


Sign in / Sign up

Export Citation Format

Share Document