Breaking Biological Barriers with a Toothbrush

2007 ◽  
Vol 86 (8) ◽  
pp. 769-774 ◽  
Author(s):  
K. Amano ◽  
K. Miyake ◽  
J.L. Borke ◽  
P.L. McNeil

Toothbrushing exposes epithelia and other tissues of the oral cavity to mechanical stress. Here, we investigated whether brushing induces cell wounding—plasma membrane disruption—in epithelial and other cell types in the oral cavity. Brushing of the gingivae and tongues of rats resulted in a striking increase in the number of cells positive for a marker of disruption injury. These cells included those in all strata of the gingival epithelium, and in the skeletal muscle of the tongue. Additionally, we found that brushing resulted in an increase in c-fos expression by junctional epithelial and skeletal muscle cells. Epithelial barrier function, however, was not overtly affected by brushing, despite the observed individual injuries to cells. We concluded that brushing disrupts cell plasma membrane barriers in the oral cavity and activates gene expression events that may lead to local adaptive changes in tissue architecture beneficial to gingival health.

Methods ◽  
1997 ◽  
Vol 12 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Matthew F Mescher ◽  
Elena Savelieva

1981 ◽  
Vol 9 (2) ◽  
pp. 232P-232P
Author(s):  
G. J. Belsham ◽  
R. W. Brownsey ◽  
R. M. Denton

1989 ◽  
Vol 96 (5) ◽  
pp. 1238-1248 ◽  
Author(s):  
Paul L. McNeil ◽  
Susumu Ito

2018 ◽  
Vol 3 ◽  
pp. 20 ◽  
Author(s):  
Diane L. Sherman ◽  
Peter J. Brophy

Charcot-Marie-Tooth (CMT) disease comprises up to 80 monogenic inherited neuropathies of the peripheral nervous system (PNS) that collectively result in demyelination and axon degeneration. The majority of CMT disease is primarily either dysmyelinating or demyelinating in which mutations affect the ability of Schwann cells to either assemble or stabilize peripheral nerve myelin. CMT4F is a recessive demyelinating form of the disease caused by mutations in the Periaxin (PRX) gene. Periaxin (Prx) interacts with Dystrophin Related Protein 2 (Drp2) in an adhesion complex with the laminin receptor Dystroglycan (Dag). In mice the Prx/Drp2/Dag complex assembles adhesive domains at the interface between the abaxonal surface of the myelin sheath and the cytoplasmic surface of the Schwann cell plasma membrane. Assembly of these appositions causes the formation of cytoplasmic channels called Cajal bands beneath the surface of the Schwann cell plasma membrane. Loss of either Periaxin or Drp2 disrupts the appositions and causes CMT in both mouse and man. In a mouse model of CMT4F, complete loss of Periaxin first prevents normal Schwann cell elongation resulting in abnormally short internodal distances which can reduce nerve conduction velocity, and subsequently precipitates demyelination. Distinct functional domains responsible for Periaxin homodimerization and interaction with Drp2 to form the Prx/Drp2/Dag complex have been identified at the N-terminus of Periaxin. However, CMT4F can also be caused by a mutation that results in the truncation of Periaxin at the extreme C-terminus with the loss of 391 amino acids. By modelling this in mice, we show that loss of the C-terminus of Periaxin results in a surprising reduction in Drp2. This would be predicted to cause the observed instability of both appositions and myelin, and contribute significantly to the clinical phenotype in CMT4F.


Sign in / Sign up

Export Citation Format

Share Document