Headless Compression Screw Fixation for Proximal Phalanx Fractures: A Biomechanical Study

Hand ◽  
2020 ◽  
pp. 155894472092664
Author(s):  
Lauren Fader ◽  
Luke Robinson ◽  
Michael Voor

Background: Proximal phalanx fractures are common injuries of the hand with multiple treatment options. Intramedullary (IM) screw fixation has become more widely used, and early outcomes are promising. However, biomechanical data regarding this type of fixation are sparse. Methods: Two methods of IM screw fixation of proximal phalanx fractures were tested in cadaver specimens. All specimens were treated with a single antegrade headless compression screw, with half getting the addition of a blocking screw. To test the most common deforming force of flexion-extension, each phalanx was subjected to apex volar 3-point bending using the Materials Testing System test frame. Results: There was no significant difference in the stiffness of 3-point bending with single antegrade screws alone and with a blocking screw (mean, 63.1 vs 52.2 N/mm; P = .27). When comparing smaller with larger specimens, stiffness of the small group was significantly greater than that of the large group when both fixation methods were included (85.3 vs 30.1 N/mm; P < .0002). When comparing stiffness with percent fill of the screw within bone, there was a moderately positive correlation (0.51). Conclusions: Addition of a blocking screw did not increase the stability of the IM screw fixation construct for proximal phalanx fractures. When comparing specimen size, the smaller bones were stiffer under 3-point bending load, regardless of the type of fixation. In addition, those specimens that had a larger longitudinal screw length to bone length ratio were stiffer. These findings provide valuable information as techniques for IM screw fixation of proximal phalanx fractures continue to evolve.

2017 ◽  
Vol 22 (01) ◽  
pp. 35-38 ◽  
Author(s):  
Eichi Itadera ◽  
Takahiro Yamazaki

We developed a new internal fixation method for extra-articular fractures at the base of the proximal phalanx using a headless compression screw to achieve rigid fracture fixation through a relatively easy technique. With the metacarpophalangeal joint of the involved finger flexed, a smooth guide-pin is inserted into the intramedullary canal of the proximal phalanx through the metacarpal head and metacarpophalangeal joint. Insertion tunnels are made over the guide-pin using a cannulated drill. Then, a headless cannulated screw is placed into the proximal phalanx. All of five fractures treated by this procedure obtained satisfactory results.


Hand ◽  
2021 ◽  
pp. 155894472097411
Author(s):  
Luke T. Nicholson ◽  
Kristen M. Sochol ◽  
Ali Azad ◽  
Ram Kiran Alluri ◽  
J. Ryan Hill ◽  
...  

Background: Management of scaphoid nonunions with bone loss varies substantially. Commonly, internal fixation consists of a single headless compression screw. Recently, some authors have reported on the theoretical benefits of dual-screw fixation. We hypothesized that using 2 headless compression screws would impart improved stiffness over a single-screw construct. Methods: Using a cadaveric model, we compared biomechanical characteristics of a single tapered 3.5- to 3.6-mm headless compression screw with 2 tapered 2.5- to 2.8-mm headless compression screws in a scaphoid waist nonunion model. The primary outcome measurement was construct stiffness. Secondary outcome measurements included load at 1 and 2 mm of displacement, load to failure for each specimen, and qualitative assessment of mode of failure. Results: Stiffness during load to failure was not significantly different between single- and double-screw configurations ( P = .8). Load to failure demonstrated no statistically significant difference between single- and double-screw configurations. Using a qualitative assessment, the double-screw construct maintained rotational stability more than the single-screw construct ( P = .029). Conclusions: Single- and double-screw fixation constructs in a cadaveric scaphoid nonunion model demonstrate similar construct stiffness, load to failure, and load to 1- and 2-mm displacement. Modes of failure may differ between constructs and represent an area for further study. The theoretical benefit of dual-screw fixation should be weighed against the morphologic limitations to placing 2 screws in a scaphoid nonunion.


Author(s):  
Duncan S. Van Nest ◽  
Michael Reynolds ◽  
Eugene Warnick ◽  
Matthew Sherman ◽  
Asif M. Ilyas

Abstract Background Headless compression screw fixation with bone grafting has been the mainstay of treatment for scaphoid nonunion for the past several decades. Recently, locked volar plate fixation has gained popularity as a technique for scaphoid fixation, especially for recalcitrant or secondary nonunions. Purpose The purpose of this meta-analysis was to compare union rates and clinical outcomes between locked volar plate fixation and headless compression screw fixation for the treatment of scaphoid nonunions. Methods A literature search was performed for studies documenting treatment outcomes for scaphoid nonunions from 2000 to 2020. Inclusion criteria consisted of (1) average age > 18 years, (2) primary study using screw fixation, plate fixation, or both, with discrete data reported for each procedure, and (3) average follow-up of at least 3 months. Exclusion criteria consisted of studies with incomplete or missing data on union rates. Data from each study was weighted, combined within treatment groups, and compared across treatment groups using a generalized linear model or binomial distribution. Results Following title and full-text review, 23 articles were included for analysis. Preoperatively, patients treated with plate fixation had significantly longer time from injury to surgery and were more likely to have failed prior surgical intervention. There was no significant difference between union rates at 92 and 94% for screw and plate fixation, respectively. However, plate fixation resulted in longer time to union and lower modified Mayo wrist scores. Conclusion Patients treated with locked volar plate fixation were more likely to be used for recalcitrant or secondary nonunions. There was no statistically significant difference in union rates between screw and plate fixation. The results from this meta-analysis support the select use of locked volar plate fixation for scaphoid nonunion, especially recalcitrant nonunions and those that have failed prior surgical repair.


2019 ◽  
Vol 08 (05) ◽  
pp. 360-365 ◽  
Author(s):  
Samik Patel ◽  
Juan Giugale ◽  
Nathan Tiedeken ◽  
Richard E. Debski ◽  
John R. Fowler

Background Proximal scaphoid fractures display high nonunion rates and increased revision cases. Waist fracture fixation involves maximizing screw length within the cortex; however, the optimal screw length for proximal scaphoid fractures remains unknown. Purpose The main purpose of this article is to compare stiffness and ultimate load for proximal scaphoid fracture fixation of various headless compression screw lengths. Methods Eighteen scaphoids underwent an osteotomy simulating a 7 mm oblique proximal fracture. Screws of three lengths (10, 18, and 24 mm) were randomly assigned for fixation. Each specimen underwent cyclic loading with stiffness calculated during the last loading cycle. Specimens that withstood cyclic loading were loaded to failure. Results No significant difference in stiffness between screw lengths was found. Ultimate load was significantly impacted by the screw length. A significant difference in ultimate load between a 10 and 24 mm screw was found; however, no significant difference occurred in ultimate load between an 18 and 24 mm screw. Conclusions No significant difference in stiffness between all groups could be due to similarities in purchase in the proximal aspect. The 10 mm screw withstanding less ultimate load compared to the 24 mm screw could be due to the 10 mm screw gaining less purchase on either side of the fracture site compared to the 24 mm screw. Lack of significant difference in ultimate load between the 18 and 24 mm screw could be occurring because the fracture site is closer to the 18 mm screw midpoint, as distal threads are engaged closer to the fracture. Clinical Relevance Maximizing screw length may not provide superior fixation biomechanically compared with fixation utilizing a 6 mm shorter screw for proximal scaphoid fractures.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
Heng-Li Huang ◽  
...  

Abstract Background Metacarpal shaft fracture is a common fracture in hand trauma injuries. Surgical intervention is indicated when fractures are unstable or involve considerable displacement. Current fixation options include Kirschner wire, bone plates, and intramedullary headless screws. Common complications include joint stiffness, tendon irritation, implant loosening, and cartilage damage. Objective We propose a modified fixation approach using headless compression screws to treat transverse or short-oblique metacarpal shaft fracture. Materials and methods We used a saw blade to model transverse metacarpal neck fractures in 28 fresh porcine metacarpals, which were then treated with the following four fixation methods: (1) locked plate with five locked bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two Kirschner wires (K group), and (4) a headless compression screw (HC group). In the HC group, we proposed a novel fixation model in which the screw trajectory was oblique to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; thus, the screw did not damage the articular cartilage. The specimens were tested using a modified three-point bending test on a material testing system. The maximum fracture forces and stiffness values of the four fixation types were determined by observing the force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the exact Wilcoxon rank sum test with Bonferroni adjustment was performed to conduct paired comparisons among the groups. Results The maximum fracture forces (median ± interquartile range [IQR]) of the LP, RP, HC, and K groups were 173.0 ± 81.0, 156.0 ± 117.9, 60.4 ± 21.0, and 51.8 ± 60.7 N, respectively. In addition, the stiffness values (median ± IQR) of the LP, HC, RP, and K groups were 29.6 ± 3.0, 23.1 ± 5.2, 22.6 ± 2.8, and 14.7 ± 5.6 N/mm, respectively. Conclusion Headless compression screw fixation provides fixation strength similar to locked and regular plates for the fixation of metacarpal shaft fractures. The headless screw was inserted obliquely to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; therefore the articular cartilage iatrogenic injury can be avoidable. This modified fixation method may prevent tendon irritation and joint cartilage violation caused by plating and intramedullary headless screw fixation.


Author(s):  
Hassan A. Qureshi ◽  
Kashyap Komarraju Tadisina ◽  
Gianfranco Frojo ◽  
Kyle Y. Xu ◽  
Bruce A. Kraemer

Abstract Background Isolated traumatic lunate fractures without other surgical carpal bone or ligamentous injuries are extremely rare, with few published reports available to guide management. Lunate fracture management is controversial, and depends on concurrent injuries of adjacent carpal bones, ligaments, risk of ischemia, and displacement. Case Description A 48-year-old right hand dominant man suffered a crush injury to the left hand caught between a forklift and a metal shelf. Radiographs and computed tomography imaging of the left hand and wrist were significant for a displaced Teisen IV fracture of the lunate. A dorsal ligament sparing approach was utilized to access, reduce, and fixate the fracture using a headless compression screw. After immobilization and rehab, at 9 months after initial injury, the patient was back to work on full duty without restriction and pleased with the results of his treatment. Literature Review A literature review of lunate fracture compression screw fixation was performed and revealed a total of three reports indicating successful treatment of fractures, with patients returning to full activity. Clinical Relevance Lunate fractures are rare, often missed, and treating these injuries can be challenging, particularly in the setting of acute trauma. Based on our limited experience, we believe that open reduction and internal fixation of isolated Teisen IV lunate fractures with a headless compression screw is a viable treatment modality with satisfactory outcomes.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Baver Acar ◽  
Ozkan Kose ◽  
Adil Turan ◽  
Melih Unal ◽  
Yusuf Alper Kati ◽  
...  

Objective. The purpose of this retrospective study was to compare the clinical and radiological results of magnesium versus titanium screw fixation for modified distal chevron osteotomy in hallux valgus (HV). Materials and Methods. A total of 31 patients who underwent modified distal chevron osteotomy for HV deformity between 2014 and 2017 were reviewed retrospectively. Headless magnesium (Mg) compression screw fixation was applied in 16 patients (17 feet) and headless titanium (Ti) compression screw in 15 patients (17 feet). Patients were followed up for at least 12 months with a mean of 19.0 ± 6.8 months in the Mg screw group and 16.2 ± 6.19 in the Ti screw group, respectively (p: 0.234). Clinical results were evaluated using the American Orthopedic Foot and Ankle Society Hallux metatarsophalangeal-interphalangeal (AOFAS-MTP-IP) scale and a visual analogue scale (VAS). The hallux valgus angle (HVA) and intermetatarsal angle (IMA) were measured before and after surgery. Time to osteotomy union and any complications were recorded and compared between the groups. Results. An improvement in the AOFAS-MTP-IP scale and VAS points were recorded in both groups with no statistically significant difference between the groups (p: 0.764 and 0.535, resp.). At the final follow-up examination, HVA and IMA were similar (p: 0.226 and 0.712, resp.). There was no significant loss of correction between the early and final radiographs in respect of HVA and IMA in both groups (p: 0.321 and p: 0.067). Full union of the osteotomy was obtained in all patients. Prolonged (1.5 months) swelling and mild hyperemia around the surgical incision were observed in 1 patient in the Mg group but there was a good response to physical and medical therapy, and the complaints were completely resolved. There were no other significant complications in either group. Conclusion. The results of this study showed that bioabsorbable Mg compression screw fixation has similar therapeutic efficacy to Ti screw fixation in respect of functional and radiological outcomes. Bioabsorbable Mg screw is an alternative fixation material that can be safely used for modified distal chevron osteotomy in HV surgery.


Hand ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 798-804 ◽  
Author(s):  
William J. Warrender ◽  
David E. Ruchelsman ◽  
Michael G. Livesey ◽  
Chaitanya S. Mudgal ◽  
Michael Rivlin

Background: There has been a recent increase in the use of headless compression screws for fixation of metacarpal neck and shaft fractures as they offer several advantages, and minimal complications have been reported. This study aimed to evaluate the clinical complications and their solutions following retrograde intramedullary headless compression screw fixation of metacarpal fractures. We describe complications and the approach to their management. Methods: We performed a multicenter case series through retrospective review of all patients treated with intramedullary headless screw fixation of metacarpal fractures by 3 fellowship-trained hand surgeons. Patient demographics, implant used, type of complication, pre- and postoperative radiographs, operative reports, and sequelae were reviewed for each case. We defined complications as infection, loss of fixation, hardware failure, malrotation, nonunion, malunion, metal allergy, and any repeat surgical intervention. Results: Four complications (2.5%) were identified through the review of 160 total metacarpal fractures. One complication was a nickel allergy, one was a broken screw after repeat trauma, and 2 patients had bent intramedullary screws. Screw removal in 3 patients was simple and without complications or persistent limitations. One bent screw with a refracture was left in place. No serious complications were seen. Conclusion: Intramedullary screw fixation of metacarpal fractures is safe with a low incidence of complications (2.5%) that can be safely and effectively managed.


2012 ◽  
Vol 40 (11) ◽  
pp. 2578-2582 ◽  
Author(s):  
Masashi Nagao ◽  
Yoshitomo Saita ◽  
So Kameda ◽  
Hiroaki Seto ◽  
Ryo Sadatsuki ◽  
...  

Background: Internal fixation is advocated as the primary treatment for fifth metatarsal Jones fractures in athletes; however, screw insertion site discomfort and refracture can occur especially in competitive athletes. The ideal implant has not been determined. Hypothesis: Headless compression screw fixation of proximal fifth metatarsal Jones fractures is an effective treatment approach especially in competitive athletes. Study Design: Case series; Evidence level, 4. Methods: We studied 60 athletes treated surgically with a headless compression screw for fifth metatarsal Jones fractures (mean age, 19 years). The mean follow-up time was 178 weeks. We evaluated the clinical and radiographic outcomes of headless compression screw fixation of Jones fractures. Results: All athletes returned to full activity. The mean time to start running after surgery was 6.3 weeks (range, 3-12.7 weeks), and the mean time to full activity after surgery was 11.2 weeks (range, 6-25 weeks). One athlete suffered a delayed union, which healed uneventfully. One athlete suffered a nonunion and underwent reoperation for a screw exchange to an autogenous bone graft harvested from the iliac crest. No screw breakage was reported. No athlete suffered a refracture or discomfort in the screw insertion site. Conclusion: Headless compression screw fixation of fifth metatarsal Jones fractures provided excellent results, allowing athletes to return to full activity without both screw insertion site irritation and clinical refracture.


Sign in / Sign up

Export Citation Format

Share Document