scholarly journals The Selby-Russell Dispute Regarding the Nonreporting of Critical Data in the Mega-Mouse Experiments of Drs William and Liane Russell That Spanned Many Decades: What Happened, Current Status, and Some Ramifications

Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932581990071
Author(s):  
P. B. Selby

The Russells began their studies of the hereditary effects of radiation in the late 1940s, and their experiments contributed much to what is known about the induction of gene mutations in mice. I had a close association with them for about 26 years, and they relied on me considerably for database management and statistical support. In 1994, I was shocked to discover that, in experiments on males, they had failed to report numerous spontaneous mutations that arose during the perigametic interval and were detected as clusters of mutations. I realized that their nondisclosure of this information meant that the decades-long application of their data to estimate hereditary risks of radiation to humans using the doubling-dose approach had resulted in a several-fold overestimation of risk. I accordingly reported the situation to funding agencies. The resulting complicated situation is referred to here as the Selby-Russell Dispute. Highlights of the resulting investigation, as well as what occurred afterward, are described, and reasons will be provided to show why, in my opinion, the hereditary risk from radiation in humans was likely overestimated by at least 10-fold because the Russells decided not to report critical information from their massive experiments.

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 266 ◽  
Author(s):  
Aryamav Pattnaik ◽  
Bikash R. Sahoo ◽  
Asit K. Pattnaik

The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.


Author(s):  
Yunqing Chen ◽  
Hongyan Fan ◽  
Shijun Wang ◽  
Guanmin Tang ◽  
Changlin Zhai ◽  
...  

Ischemia-reperfusion (I/R) injury is a major cause of cell death and organ damage in numerous pathologies, including myocardial infarction, stroke, and acute kidney injury. Current treatment methods for I/R injury are limited. Ferroptosis, which is a newly uncovered type of regulated cell death characterized by iron overload and lipid peroxidation accumulation, has been investigated in various diseases. There is increasing evidence of a close association between ferroptosis and I/R injury, with ferroptosis frequently identified as a new therapeutic target for the management of I/R injury. This review summarizes the current status of ferroptosis and discusses its relationship with I/R injury, as well as potential treatment strategies targeting it.


2006 ◽  
Vol 9 (10) ◽  
pp. 1-4
Author(s):  
R. Rabinovitch ◽  
A. Schwer

Brachytherapy treatment consists of the insertion of radioactive sources into tissue to deliver radiotherapy directly to the tumor. Early treatment utilizing this method required intra-operative placement of 15–20 catheters by the radiation oncologist, a highly specialized procedure which limited its widespread use despite encouraging results from the first clinical trial and the benefits to the patient of receiving radiation treatment to only 2 cm of tissue beyond the borders of the lumpectomy cavity and the ability to complete the radiotherapy component of breast conserving treatment in 4–5 days, instead of the usual 4–6 weeks. The MammoSite® Radiation Therapy System allows either a radiation oncologist or a surgeon to implant a much simplified brachytherapy device, thus increasing the number of patients who can receive this treatment. The device, which received FDA approval in May 2002, works by creating a cavity inside the lumpectomy site via a balloon. A high dose-rate brachytherapy source is inserted into this cavity, evenly irradiating the tissue at highest risk of containing residual cancer cells. Data collected since its approval show that MammoSite offers tumor control equal to traditional radiotherapy with fewer side effects of radiation exposure to nearby tissues. However, the invasive nature and high cost of this treatment mean that MammoSite should not be seen as the sole future direction of radiotherapy treatment delivery methods.


Biochimie ◽  
2019 ◽  
Vol 157 ◽  
pp. 64-71 ◽  
Author(s):  
Amirsaeed Sabeti Aghabozorgi ◽  
Amirhossein Bahreyni ◽  
Atena Soleimani ◽  
Afsane Bahrami ◽  
Majid Khazaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document