scholarly journals Heat transfer capability simulation of high-temperature heat pipe in supersonic vehicle leading edge applications

2016 ◽  
Vol 8 (4) ◽  
pp. 168781401664437
Author(s):  
Donghuan Liu ◽  
Yinghua Liu
2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040105
Author(s):  
Xiao-Jun Zhu ◽  
Feng Li

Aiming at the severe aerodynamic heating problem in the leading edge of the hypersonic vehicle, in order to ensure the sharp shape of the leading edge of the wing, a dredging thermal protection structure is proposed, and the built-in high-temperature heat pipe structure is used to provide thermal protection for the leading edge of the wing. By means of numerical simulation and arc wind tunnel test, the dredging thermal protection structure of the leading edge of the wing is analyzed, and the thermal protection effect of the built-in high-temperature heat pipe is obtained. The numerical results show that under certain thermal conditions, the temperature at the leading edge of the wing decreases by 304 K, and the minimum temperature of the tail increases by 130 K. The heat flow is dredged from the high-temperature zone to the low-temperature zone, and the thermal load of the leading edge of the wing is weakened. The same result can be obtained by the arc wind tunnel test, which verifies the accuracy of the numerical method and the feasibility of the dredging thermal protection structure with high-temperature heat pipe embedded in the leading edge of the wing.


2011 ◽  
Vol 396-398 ◽  
pp. 897-903
Author(s):  
Shi Mei Sun ◽  
Jing Min Zhou

A High Temperature Heat Pipe Heat Exchanger Consists of Heat Pipes Filled with Different Working Media inside. in Different Temperature Zones, Heat Pipes with Different Working Media Are Linked Safely by Controlling the Vapor Temperature, the Media inside the Heat Pipe. the Vapor Temperature inside the Pipe Is Heavily Affected by the Temperature Field of Fluid outside the Heat Pipes and the Heat Transfer Performance inside the Heat Pipe, while the Heat Transfer Performance inside the Pipe in Turn Has a Bearing on the Temperature Distribution of Fluid outside the Pipe. to Coordinate the Fluid Temperature Distribution both inside and outside the Pipes, Study on Local Heat Transfer Enhancement Has Been Conducted on High Temperature Heat Pipe Heat Exchanger in this Article, and Cfd Computational Software Was Used to Make Rational and Accurate Prediction of Fluid Temperature Distribution both inside and outside the Pipes, so as to Provide Economic and Reliable Design Basis for High Temperature Heat Pipe Heat Exchanger.


2021 ◽  
Vol 163 ◽  
pp. 108536
Author(s):  
Yang Ji ◽  
Dazhong Yuan ◽  
Zhanxun Che ◽  
Jie Zhao ◽  
Dawei Tang ◽  
...  

2000 ◽  
Vol 123 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Jian Ling ◽  
Yiding Cao ◽  
Alex P. Lopez

A radially rotating miniature high-temperature heat pipe employs centrifugal force to return the condensate in the condenser section to the evaporator section. The heat pipe has a simple structure, very high effective thermal conductance and heat transfer capacity, and can work in hostile high-temperature environments. In this research, a high-speed rotating test apparatus and data acquisition system for radially rotating miniature high-temperature heat pipes are established. Extensive experimental tests on two heat pipes with different dimensions are performed, and various effects of influential parameters on the performance characteristics of the heat pipes are investigated. The ranges of the important parameters covered in the current experiments are: 470⩽ω2Za¯/g⩽1881; 47 W⩽Q⩽325W; di=1.5 and 2 mm; and 1.05×10−3m3/s⩽W⩽13.4×10−3m3/s. The experimental data prove that the radially rotating miniature high-temperature heat pipe has a high effective thermal conductance, which is 60–100 times higher than the thermal conductivity of copper, and a large heat transfer capacity that is more than 300 W. Therefore, the heat pipe appears to be feasible for cooling high-temperature gas turbine components.


2014 ◽  
Vol 953-954 ◽  
pp. 1035-1039
Author(s):  
Li Qun Wang ◽  
Zhong Bo Yi ◽  
Zhong Xiang Wei

Aimed at improving the utilization of pulverized coal, high-temperature heat pipe technology was introduced into lignite carbonization.Under the design of power of 10kw semi-industrial pulverized coal carbonization test equipment, Fugu lignite coal as raw material to investigate the operating characteristics of the device and carbonization characteristics. Experimental result shows that the high temperature heat pipes heat steadily and meet the temperature requirement of low-temperature carbonization. With the extension of the holding time, the semi-coke fixed carbon content increasing, but volatile matter vice versa, however, holding time above 60 minutes, the effect of carbonization is not obvious, and the best carbonization time is 30 ~ 60 minutes. The length of the holding time has little effect on gas composition, the content of H2 and CH4 are relatively higher than the rest gas, (H2 + CH4) gas accounted for 70% of the total, the heating value remains at 18.76 ~ 19.22MJ/m3, belongs to medium-high value gas, could provide for industrial and civilian use.


2022 ◽  
Vol 165 ◽  
pp. 108760
Author(s):  
Hao Sun ◽  
Xiao Liu ◽  
Haoyu Liao ◽  
Chenglong Wang ◽  
Jing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document