Study on adaptive heat transfer performance of high temperature heat pipe

2021 ◽  
Vol 163 ◽  
pp. 108536
Author(s):  
Yang Ji ◽  
Dazhong Yuan ◽  
Zhanxun Che ◽  
Jie Zhao ◽  
Dawei Tang ◽  
...  
2011 ◽  
Vol 396-398 ◽  
pp. 897-903
Author(s):  
Shi Mei Sun ◽  
Jing Min Zhou

A High Temperature Heat Pipe Heat Exchanger Consists of Heat Pipes Filled with Different Working Media inside. in Different Temperature Zones, Heat Pipes with Different Working Media Are Linked Safely by Controlling the Vapor Temperature, the Media inside the Heat Pipe. the Vapor Temperature inside the Pipe Is Heavily Affected by the Temperature Field of Fluid outside the Heat Pipes and the Heat Transfer Performance inside the Heat Pipe, while the Heat Transfer Performance inside the Pipe in Turn Has a Bearing on the Temperature Distribution of Fluid outside the Pipe. to Coordinate the Fluid Temperature Distribution both inside and outside the Pipes, Study on Local Heat Transfer Enhancement Has Been Conducted on High Temperature Heat Pipe Heat Exchanger in this Article, and Cfd Computational Software Was Used to Make Rational and Accurate Prediction of Fluid Temperature Distribution both inside and outside the Pipes, so as to Provide Economic and Reliable Design Basis for High Temperature Heat Pipe Heat Exchanger.


2021 ◽  
Vol 248 ◽  
pp. 01004
Author(s):  
Chongju Hu ◽  
Xiuxiang Zhang ◽  
Hongyan Wang ◽  
Bo Wu ◽  
Pinghua Zhang

Heat pipe may be affected by the high temperature heat source during operation, resulting in unsteady oscillation heating. In this paper, the influence of alternating power and period on the start-up and heat transfer performance of mercury heat pipe is studied by using the method of equivalent thermal resistance of heat pipe. The results are as follows:1) The start-up time of alternating power heating and steady-state power heating is basically equal; 2) For the alternating power heating, the steady-state temperature of heat pipe changes periodically, increasing the alternating period or the amplitude of alternating power will lead to the increase of the fluctuation amplitude of heat pipe temperature, and the influence of alternating period is greater than that of changing the amplitude of alternating power. 3) Under the condition of alternating power heating, the steady-state thermal resistance of heat pipe changes periodically. The fluctuation amplitude of steady-state thermal resistance of heat pipe increases with the increase of alternating period and alternating power amplitude, and the influence of alternating power amplitude is greater than that of alternating period.


2014 ◽  
Vol 1044-1045 ◽  
pp. 320-326 ◽  
Author(s):  
Yun Liu ◽  
Hong Zhang

The medium temperature heat pipe is a highly effective heat transfer element through heat exchange due to phase change of the liquid organic working fluid. A medium temperature heat pipe used in solar energy receiver of parabolic trough thermal power generating system has been analysed, and a medium temperature heat pipe with liquid organic working fluid has been designed. The isothermal performance and heat transfer performance of the medium temperature heat pipe with liquid organic working fluid have been tested under various power input and different inclined angles. Test proves that axial temperature difference of half circle heated medium temperature heat pipe is smaller, and the half circle heated heat pipe with inclined angle is 4°and 8°can work stably, having good axial isothermal performance and heat transfer performance, the influence on isothermal performance and heat transfer performance of the medium temperature heat pipe can be neglected.


2000 ◽  
Vol 123 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Jian Ling ◽  
Yiding Cao ◽  
Alex P. Lopez

A radially rotating miniature high-temperature heat pipe employs centrifugal force to return the condensate in the condenser section to the evaporator section. The heat pipe has a simple structure, very high effective thermal conductance and heat transfer capacity, and can work in hostile high-temperature environments. In this research, a high-speed rotating test apparatus and data acquisition system for radially rotating miniature high-temperature heat pipes are established. Extensive experimental tests on two heat pipes with different dimensions are performed, and various effects of influential parameters on the performance characteristics of the heat pipes are investigated. The ranges of the important parameters covered in the current experiments are: 470⩽ω2Za¯/g⩽1881; 47 W⩽Q⩽325W; di=1.5 and 2 mm; and 1.05×10−3m3/s⩽W⩽13.4×10−3m3/s. The experimental data prove that the radially rotating miniature high-temperature heat pipe has a high effective thermal conductance, which is 60–100 times higher than the thermal conductivity of copper, and a large heat transfer capacity that is more than 300 W. Therefore, the heat pipe appears to be feasible for cooling high-temperature gas turbine components.


Sign in / Sign up

Export Citation Format

Share Document