scholarly journals An ankle rehabilitation robot based on 3-RRS spherical parallel mechanism

2017 ◽  
Vol 9 (8) ◽  
pp. 168781401771811 ◽  
Author(s):  
Yuting Du ◽  
Ruiqin Li ◽  
Dahai Li ◽  
Shaoping Bai
2013 ◽  
Vol 749 ◽  
pp. 566-570
Author(s):  
Bing Yan Cui ◽  
Zhen Lin Jin

Kinematics research of mechanism is very important, the dynamic analysis and the design are based on linematics analysis. In this paper, a novel robot hip joint based on 3-RRR orthogonal spherical parallel mechanism is proposed, and Jacobin matrix is established. Then the linematics transmission performance evaluation index is defined. Furthermore the linematics transmission performance index is analyzed. The hip joint has good linematics transmission performance at the initial position. With the increase of workspace, linematics transmission performance gradually decreased. 3-RRR parallel mechanism is the ideal prototype of bionic robot and rehabilitation robot hip joint.


2021 ◽  
Author(s):  
jianjun zhang ◽  
shuai yang ◽  
chenglei liu ◽  
xiaohui wang ◽  
shijie guo

Abstract The kinematic equivalent model of the existing ankle rehabilitation robot is inconsistent with the anatomy structure of the human ankle, which will influence the rehabilitation effect . Therefore, this paper equivalent the human ankle to the UR model and proposes a novel 3-DOF generalized spherical parallel mechanism for ankle rehabilitation. The parallel mechanism has two spherical centers corresponding to the rotation center of the tibiotalar joint and subtalar joint. Via screw theory, the mobility of the parallel mechanism is analyzed, which meets the requirement of the human ankle. Its inverse kinematics is presented and singularities are identified based on the Jacobian matrix. The workspaces of the parallel mechanism are obtained by the search method and compared with the motion range of the human ankle, which shows that the parallel mechanism could meet the motion demand of ankle rehabilitation. In addition, on the basis of the motion/force transmissibility, the performance atlases are plotted in the parameter optimal design space and the optimum region is obtained according to the demands of practical application. The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and have excellent kinematic performance in its rehabilitation range, which provides a theoretical basis for the prototype design and experiment verification.


2013 ◽  
Vol 655-657 ◽  
pp. 1038-1042
Author(s):  
Shi De Zhang ◽  
Qiang Wang ◽  
Ping Zhou

This paper puts forward a new type of wearable parallel mechanism on the basis of the analysis of the human ankle motion mechanism, damage analysis and methods of rehabilitation. The mechanism can realize three DOFs rotation of ankle. And the axes of the three rotations intersect at a point. Did the position and velocity analysis using the screw theory of mechanism analysis. The singularity and dexterity of this mechanism are also analyzed. According to the simulation result, this parallel mechanism has no singular configuration or uncertainty configuration in human lower limb workspace, has good maneuverability.


Author(s):  
Mingjie Dong ◽  
Yu Zhou ◽  
Jianfeng Li ◽  
Xi Rong ◽  
Wenpei Fan ◽  
...  

Abstract Background The ankle joint complex (AJC) is of fundamental importance for balance, support, and propulsion. However, it is particularly susceptible to musculoskeletal and neurological injuries, especially neurological injuries such as drop foot following stroke. An important factor in ankle dysfunction is damage to the central nervous system (CNS). Correspondingly, the fundamental goal of rehabilitation training is to stimulate the reorganization and compensation of the CNS, and to promote the recovery of the motor system’s motor perception function. Therefore, an increasing number of ankle rehabilitation robots have been developed to provide long-term accurate and uniform rehabilitation training of the AJC, among which the parallel ankle rehabilitation robot (PARR) is the most studied. The aim of this study is to provide a systematic review of the state of the art in PARR technology, with consideration of the mechanism configurations, actuator types with different trajectory tracking control techniques, and rehabilitation training methods, thus facilitating the development of new and improved PARRs as a next step towards obtaining clinical proof of their rehabilitation benefits. Methods A literature search was conducted on PubMed, Scopus, IEEE Xplore, and Web of Science for articles related to the design and improvement of PARRs for ankle rehabilitation from each site’s respective inception from January 1999 to September 2020 using the keywords “ parallel”, “ ankle”, and “ robot”. Appropriate syntax using Boolean operators and wildcard symbols was utilized for each database to include a wider range of articles that may have used alternate spellings or synonyms, and the references listed in relevant publications were further screened according to the inclusion criteria and exclusion criteria. Results and discussion Ultimately, 65 articles representing 16 unique PARRs were selected for review, all of which have developed the prototypes with experiments designed to verify their usability and feasibility. From the comparison among these PARRs, we found that there are three main considerations for the mechanical design and mechanism optimization of PARRs, the choice of two actuator types including pneumatic and electrically driven control, the covering of the AJC’s motion space, and the optimization of the kinematic design, actuation design and structural design. The trajectory tracking accuracy and interactive control performance also need to be guaranteed to improve the effect of rehabilitation training and stimulate a patient’s active participation. In addition, the parameters of the reviewed 16 PARRs are summarized in detail with their differences compared by using figures and tables in the order they appeared, showing their differences in the two main actuator types, four exercise modes, fifteen control strategies, etc., which revealed the future research trends related to the improvement of the PARRs. Conclusion The selected studies showed the rapid development of PARRs in terms of their mechanical designs, control strategies, and rehabilitation training methods over the last two decades. However, the existing PARRs all have their own pros and cons, and few of the developed devices have been subjected to clinical trials. Designing a PARR with three degrees of freedom (DOFs) and whereby the mechanism’s rotation center coincides with the AJC rotation center is of vital importance in the mechanism design and optimization of PARRs. In addition, the design of actuators combining the advantages of the pneumatic-driven and electrically driven ones, as well as some new other actuators, will be a research hotspot for the development of PARRs. For the control strategy, compliance control with variable parameters should be further studied, with sEMG signal included to improve the real-time performance. Multimode rehabilitation training methods with multimodal motion intention recognition, real-time online detection and evaluation system should also be further developed to meet the needs of different ankle disability and rehabilitation stages. In addition, the clinical trials are in urgent need to help the PARRs be implementable as an intervention in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document