scholarly journals Triple parametric tool path interpolation for five-axis machining with three-dimensional cutter compensation

2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879822
Author(s):  
Chuanjun Li ◽  
Bin Zhang ◽  
XueLei Wang ◽  
Qiang Liu ◽  
Huan Liu

Parametric interpolation obtains a great success in three-axis surface machining with smooth motion, high accuracy, and high machining efficiency, but does not go well in five-axis surface machining due to lack of appropriate and efficient methods of tool path generation, interpolation, and three-dimensional cutter compensation. This article proposes a triple parametric tool path interpolation method for five-axis machining with three-dimensional cutter compensation, which proposes an appropriate triple parametric tool generation method for realizing the three-dimensional cutter compensation in five-axis parametric interpolation. A triple parametric interpolation algorithm is also proposed to realizing the simultaneous interpolation of the source data, which ensures the primitivity and maintains the accuracy. The proposed three-dimensional cutter compensation can compensate the errors caused by minor changes in cutter size, thus machining accuracy can be improved. Finally, illustrated example verifies the feasibility and applicability of the proposed methods.

2012 ◽  
Vol 622-623 ◽  
pp. 414-419 ◽  
Author(s):  
Wen Ping Mou ◽  
Zhi Yong Song ◽  
Zhi Ping Guo ◽  
Li Min Tang

NAS (National Aerospace Standard) 979 is the only standard well known in industry describing a five-axis machining test for measuring kinematic errors of five-axis machine tools. As it cannot reflect the tool path characteristics of typical ruled surface machining, five-axis machine tools which passed the NAS test may not have the ability to satisfy the requirement of the real industrial applications. To fill this gap between the NAS test and the real industrial applications, an “S” machining test is proposed in this paper. The case study shows that the proposed machining test is feasible and practicable.


2011 ◽  
Vol 697-698 ◽  
pp. 244-248
Author(s):  
Ke Hua Zhang ◽  
Li Min ◽  
Dong Hui Wen

A new tool path generation method based on Z-buffer method is proposed for free-form surface machining by using ball-end cutters. Firstly, to avoid ball-end mill cutting the workpiece, we make the cutter shaft which is perpendicular to machining surface tilt angle θ, then determine the examining area and then judge there is or not a interference occurring between ball-end mill and examining area, if there is, then make a adjustment for cutter shaft. The discretized points within the examining area are efficiently read in and stored directly by the computer hardware; no extra searching and iterative methods are needed. Simulation results show that, comparing with the traditional algorithm, the tool-position calculation time is shorter, and the phenomenon of workpiece squeezed and scratched is less in this algorithm. It meets the basic needs of five axis machining accuracy. Finally we make a practical machining experiment for cutter location generated.


2010 ◽  
Vol 443 ◽  
pp. 330-335 ◽  
Author(s):  
Yu Han Wang ◽  
Jing Chun Feng ◽  
Sun Chao ◽  
Ming Chen

In order to exploit the advantages of five-axis flank milling method for space free surface machining to the full, a definition of non-equidistant dual-NURBS tool path is presented first. On this basis, the constraint of velocity of points on the tool axis and the constraint of scanning area of the tool axis are deduced. Considering both of these constraints, an adaptive feed five-axis dual-NURBS interpolation algorithm is proposed. The simulation results show that the feedrate with the proposed algorithm satisfies both of the constraints and the machining time is reduced by 38.3% in comparison with the constant feed interpolator algorithm.


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


2010 ◽  
Vol 426-427 ◽  
pp. 572-576
Author(s):  
Can Zhao ◽  
Y.Y. Guo ◽  
Guang Bin Bu

There are two key problems in the manufacture process of impeller with HSM(High Speed Machining). One is the collision between tool and blade, the other is gnawed-cutting arisen by non-uniform change of the cutter axis. The control algorithm of collision-free cutter-axis was described and applied in this paper. The cutter-axis vector was optimized by quaternary linear interpolation method to make normal vector of blade changing continuous, so. These methods were synthetically used in the manufacture experiment. And the qualified impeller was produced. It indicated that the tool vector control method was feasible.


2015 ◽  
Vol 1094 ◽  
pp. 348-351
Author(s):  
Er Hong Zhang ◽  
Hua Long Zhang

This paper studies on technology of slow tool servo method and the processing of high efficiency. High precision surface NRS goal is studied for factors affecting theNRSworkability and surface machining accuracy. Including slow tool servo theory, research tools, tool path generation, surface microstructure simulation, slow tool servoNRSsurface machining and simulation systems development, installation errors and adjustment tool,Yto linear turret design,NRSsurface machining experiments.


2006 ◽  
Vol 505-507 ◽  
pp. 631-636 ◽  
Author(s):  
Yung Chou Kao ◽  
Hong Ying Chen ◽  
Y.C. Chen

This paper describes the development of a virtual CNC controller. Controller is the major driver for a CNC machine. Similarly, virtual controller is the key driving component for a virtual CNC, which is a three-dimensional digitized physical CNC. A virtual CNC can exist in every PC serving as the complementary safer counterpart in lecturing and learning the hand on operation of expensive machinery such as five-axis milling machine, high speed CNC and mill-turn because the virtual CNC will not break. Virtual reality environment provided by EON studio software has been adopted in establishing the interactivity of a virtual CNC based on the geometry model constructed in off-the-shelf CAD software. Visual Basic was used in implementing the graphical user interface to operate the virtual CNC through the developed virtual controller. The virtual controller is in charge of (1) parsing user’s NC codes, (2) simulating the tool path of the parsed NC codes, and (3)driving the virtual CNC according to the tool path. The developed virtual CNC controller has been successfully applied in implementing virtual CNCs based on two physical three-axis CNC machines and has also been demonstrated in an international exposition successfully. The virtual controller can enable the virtual CNC in facilitating lecturing, tutoring, self-learning, and reducing the chances of accidental breakdown of precious CNC equipment.


2006 ◽  
Vol 532-533 ◽  
pp. 873-876 ◽  
Author(s):  
Yu Han Wang ◽  
Jing Chun Feng ◽  
Yu Hao Li ◽  
Ming Chen

To alleviate the feed fluctuation and maintain a smooth feed in five-axis machining, this paper takes the following two constraints into account: (1) the machining dynamics, including the constraints of power, velocity and acceleration represented by upper bounds for each axis (2) the contour constraints of the tool path, including the linear distance of the segment and sharp corner at the segment junctions. With the analysis of these constraints, the optimal feed is derived and the corresponding adjusted interpolation algorithm is presented such that a smooth motion during the machining can be obtained. The presented algorithm is demonstrated by the simulation result.


Sign in / Sign up

Export Citation Format

Share Document