Development of a Virtual Controller Integrating Virtual and Physical CNC

2006 ◽  
Vol 505-507 ◽  
pp. 631-636 ◽  
Author(s):  
Yung Chou Kao ◽  
Hong Ying Chen ◽  
Y.C. Chen

This paper describes the development of a virtual CNC controller. Controller is the major driver for a CNC machine. Similarly, virtual controller is the key driving component for a virtual CNC, which is a three-dimensional digitized physical CNC. A virtual CNC can exist in every PC serving as the complementary safer counterpart in lecturing and learning the hand on operation of expensive machinery such as five-axis milling machine, high speed CNC and mill-turn because the virtual CNC will not break. Virtual reality environment provided by EON studio software has been adopted in establishing the interactivity of a virtual CNC based on the geometry model constructed in off-the-shelf CAD software. Visual Basic was used in implementing the graphical user interface to operate the virtual CNC through the developed virtual controller. The virtual controller is in charge of (1) parsing user’s NC codes, (2) simulating the tool path of the parsed NC codes, and (3)driving the virtual CNC according to the tool path. The developed virtual CNC controller has been successfully applied in implementing virtual CNCs based on two physical three-axis CNC machines and has also been demonstrated in an international exposition successfully. The virtual controller can enable the virtual CNC in facilitating lecturing, tutoring, self-learning, and reducing the chances of accidental breakdown of precious CNC equipment.

Author(s):  
Zhenyu Cheng ◽  
Wei Li ◽  
Robert Cheatham ◽  
Jianguo Wang ◽  
C. Greg Jensen ◽  
...  

Although modern machine tools and controllers have evolved along with the personal computer over the years, the standard input (M&G code files) for CNC machines has not changed. A new method of control called Direct Machining And Control (DMAC) is being developed at Brigham Young University. DMAC is a revolutionary new paradigm for rapid prototyping and CNC control by directly connecting a CAD system with software based DMAC controller. DMAC technology completely eliminates all intermediate files (APT, M&G code, STEP-NC, etc) between the CAD model and the CNC controller by directly processing the geometric tool path entities that are sent from the CAD/CAM system to the motion buffer of the controller. Direct machining maintains the efficiency and accuracy improvements seen in NURBS tool path representation, and also retains associativity between the CAD model and the tool paths driving the CNC machine tool. This paper presents a Direct Machining system designed to directly connect a commercial CAD/CAM systems (Unigraphics, CATIA, CM2 and Alias) with a software-based DMAC controller. In this paper, Direct Machining, with its requirements and implications, is explored. The overall DMAC architecture is presented. Parts from the Ford GT car were machined on a Tarus five-axis mill by the DMAC system, and were compared with traditional method which used M&G codes.


2011 ◽  
Vol 474-476 ◽  
pp. 961-966 ◽  
Author(s):  
Li Qiang Zhang ◽  
Min Yue

Collision detection is a critical problem in five-axis high speed machining. Using a combination of process simulation and collision detection based on image analysis, a rapid detection approach is developed. The geometric model provides the cut geometry for the collision detection and records a dynamic geometric information for in-process workpiece. For the precise collision detection, a strategy of image analysis method is developed in order to make the approach efficient and maintian a high detection precision. An example of five-axis machining propeller is studied to demonstrate the proposed approach. It has shown that the collision detection task can be achieved with a near real-time performance.


2010 ◽  
Vol 426-427 ◽  
pp. 572-576
Author(s):  
Can Zhao ◽  
Y.Y. Guo ◽  
Guang Bin Bu

There are two key problems in the manufacture process of impeller with HSM(High Speed Machining). One is the collision between tool and blade, the other is gnawed-cutting arisen by non-uniform change of the cutter axis. The control algorithm of collision-free cutter-axis was described and applied in this paper. The cutter-axis vector was optimized by quaternary linear interpolation method to make normal vector of blade changing continuous, so. These methods were synthetically used in the manufacture experiment. And the qualified impeller was produced. It indicated that the tool vector control method was feasible.


Author(s):  
F. J. Campa ◽  
L. N. Lopez de Lacalle ◽  
G. Urbikain ◽  
D. Ruiz

The main drawback of the high speed milling of monolithic parts for the aerospace industry is the high buy-to-fly ratio that leads to a huge material waste. This problem is caused by the need to stiffen the part during the machining in order to avoid chatter, excessive vibration and residual stresses. The present work proposes a methodology for the milling of compliant parts based on the selection of cutting conditions free of chatter. First, the modal parameters of the part in the most problematic stages of the machining are calculated by means of the finite elements method. Secondly, a three-dimensional stability model is used in each stage to calculate a three-dimensional stability lobes diagram dependent on the tool position along the whole tool path. Given the fact that the depth of cut is defined by the bulk of material, the three-dimensional stability diagram can be reduced to a two-dimensional one, which relates tool position during the machining and spindle speed, and indicates how to change the spindle speed in order to avoid the unstable areas. What is more, the proposed methodology can also be used to dimension the bulk of material, select the proper tool or improve the fixturing of the part. Finally, the methodology is validated experimentally on a test part.


2013 ◽  
Vol 300-301 ◽  
pp. 1463-1466
Author(s):  
Shang Wei Yang ◽  
Shu Kun Cao ◽  
Jia Jia

Abstract. PC-based open CNC system can fully take advantage of the computer's hardware and software resources, which can use a common high-level language: Visual C++ or Visual Basic to program. User can mix and use the standardized peripherals, application software flexibly, we use the self-developed five-axis CNC machine is experimental platform, which can develop open CNC system based on PC and motion control card. Using of five-axis machine motion control design based on "PC + motion control card" on Visual C++ platform.


Author(s):  
Zhiqian Sang ◽  
Xun Xu

Traditional Computer Numerical Control (CNC) machines use ISO6983 (G/M code) for part programming. G/M code has a number of drawbacks and one of them is lack of interoperability. The Standard for the Exchange of Product for NC (STEP-NC) as a potential replacement for G/M code aims to provide a unified and interoperable data model for CNC. In a modern CNC machine tool, more and more motors, actuators and sensors are implemented and connected to the NC system, which leads to large quantity of data being transmitted. The real-time Ethernet field-bus is faster and more deterministic and can fulfill the requirement of data transmission in the high-speed and high-precision machining scenarios. It can provide more determinism on communication, openness, interoperability and reliability than a traditional field-bus. With a traditional CNC system using G/M code, when the machining is interrupted by incidents, restarting the machining process is time-consuming and highly experience-dependent. The proposed CNC controller can generate just-in-time tool paths for feature-based machining from a STEP-NC file. When machining stoppage occurs, the system can recover from stoppage incidents with minimum human intervention. This is done by generating new tool paths for the remaining machining process with or without the availability of the original cutting tool. The system uses a real-time Ethernet field-bus as the connection between the controller and the motors.


2010 ◽  
Vol 426-427 ◽  
pp. 520-524 ◽  
Author(s):  
Song Lin Ding ◽  
John Mo ◽  
D. Yang

Owning to the ultra high feed rate and spindle speed, tool path patterns which are less important in conventional metal cutting processes becomes critical in High Speed Machining (HSM). Without an appropriate tool path strategy HSM can not be fully implemented even though the CNC machine has HSM potentials. In practice attentions are usually drawn to advanced hardware components; tool path pattern catering to HSM is often overlooked. This paper introduces the principles of tool path generation for HSM. Essential properties of HSM and its technical requirements on the CAD/CAM system are summarized. The state-of-the-art technologies and practice-oriented tool path generation methodologies are presented.


2006 ◽  
Vol 532-533 ◽  
pp. 873-876 ◽  
Author(s):  
Yu Han Wang ◽  
Jing Chun Feng ◽  
Yu Hao Li ◽  
Ming Chen

To alleviate the feed fluctuation and maintain a smooth feed in five-axis machining, this paper takes the following two constraints into account: (1) the machining dynamics, including the constraints of power, velocity and acceleration represented by upper bounds for each axis (2) the contour constraints of the tool path, including the linear distance of the segment and sharp corner at the segment junctions. With the analysis of these constraints, the optimal feed is derived and the corresponding adjusted interpolation algorithm is presented such that a smooth motion during the machining can be obtained. The presented algorithm is demonstrated by the simulation result.


Sign in / Sign up

Export Citation Format

Share Document