scholarly journals Numerical investigation about backflow of film cooling in static turbine blade leading edge

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988581
Author(s):  
Chao Gao ◽  
Haiwang Li ◽  
Huimin Zhou ◽  
Yiwen Ma ◽  
Ruquan You

In this article, film cooling characteristics, especially the phenomenon of backflow for the straight turbine blade leading edge, are investigated. Shear stress transport k-ω turbulence model and structured grids are employed to assure the accuracy of the simulation, and the computational method is verified by the available experimental data. The influences of blow ratio, hole diameter, and the spacing between holes in each row are analyzed. The formation mechanism of backflow is discussed to prevent it from happening or relieve the degree of backflow, thereby to improve the cooling efficiency. The results showed that backflow can be avoided by adjusting the structure and the layout of film cooling holes. With increase in blow ratio, the cooling film becomes more obvious at first and then fades gradually for departing from the blade surface. The jet flow is influenced by the total pressure ratio between coolant cavity and surface of blade leading edge. Smaller film hole diameter and larger hole spacing makes it easier to eject coolant and form continuous film by slowing down the pressure in the cavity. Increasing ratio of hole spacing to hole diameter ( p/ d) can effectively prevent backflow, whereas larger p/ d also makes the film coverage area smaller.

Author(s):  
Elon J. Terrell ◽  
Brian D. Mouzon ◽  
David G. Bogard

Studies of film cooling performance for a turbine airfoil predominately focus on the reduction of heat transfer to the external surface of the airfoil. However, convective cooling of the airfoil due to coolant flow through the film cooling holes is potentially a major contributor to the overall cooling of the airfoil. This study used experimental and computational methods to examine the convective heat transfer to the coolant as it traveled through the film cooling holes of a gas turbine blade leading edge. Experimental measurements were conducted on a model gas turbine blade leading edge composed of alumina ceramic which approximately matched the Biot number of an engine airfoil leading edge. The temperature rise in the coolant from the entrance to the exit of the film cooling holes was measured using a series of internal thermocouples and an external traversing thermocouple probe. A CFD simulation of the model of the leading edge was also done in order to facilitate the processing of the experimental data and provide a comparison for the experimental coolant hole heat transfer. Without impingement cooling, the coolant hole heat transfer was found to account for 50 to 80 percent of the airfoil internal cooling, i.e. the dominating cooling mechanism.


Author(s):  
Li Yang ◽  
Rui Kan ◽  
Jing Ren ◽  
Hongde Jiang

Impingement cooling plays an important role in gas turbine blade leading edge where proper heat transfer distribution is needed for extremely high and nonuniform thermal load. A 2/3 cylinder leading edge model with 3 arrays of film cooling holes was investigated with 8 film cooling arrangements. The impingement parameters and the jet Reynolds number were kept the same for the 8 configurations. The transient liquid crystal (TLC) measurement was applied on heat transfer coefficient on the leading edge. A 3D numerical method with the SST k-ω model was verified by experimental data, which shows a heat transfer error less than 15%. The film suction creates both local heat transfer enhancement and limit effect to wall jets. The hole position of film cooling holes significantly affects the shape of high heat transfer area and cooling of the intermediate area. The array angle of film cooling holes affects the spread of heat transfer laterally. The Nu in stagnation zone decreases with the increase of array angle of film cooling holes. Smaller pitch of film cooling holes helps decrease the size of fountaining flow and heat transfer valley. The Nu in stagnation zone increases with the decrease of pitch of film cooling holes. The hole position of x0/P = 0.125 is recommended for the best cooling performance in the intermediate area. The configurations with θ = 13 or P/pf = 3 work best in this study.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio and blowing ratio are studied. Computational simulations are performed using the realizable k-ε turbulence model. Effectiveness obtained by CFD simulations are compared with experiments. Three leading edge profiles, including one semi-cylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semi-cylinder model, shaped holes are located at 0 degrees (stagnation line) and ± 30 degrees. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,900 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile and on turbine blade leading edge region film cooling with shaped-hole designs.


Author(s):  
Ross Johnson ◽  
Jonathan Maikell ◽  
David Bogard ◽  
Justin Piggush ◽  
Atul Kohli ◽  
...  

When a turbine blade passes through wakes from upstream vanes it is subjected to an oscillation of the direction of the approach flow resulting in the oscillation of the position of the stagnation line on the leading edge of the blade. In this study an experimental facility was developed that induced a similar oscillation of the stagnation line position on a simulated turbine blade leading edge. The overall effectiveness was evaluated at various blowing ratios and stagnation line oscillation frequencies. The location of the stagnation line on the leading edge was oscillated to simulate a change in angle of attack between α = ± 5° at a range of frequencies from 2 to 20 Hz. These frequencies were chosen based on matching a range of Strouhal numbers typically seen in an engine due to oscillations caused by passing wakes. The blowing ratio was varied between M = 1, M = 2, and M = 3. These experiments were carried out at a density ratio of DR = 1.5 and mainstream turbulence levels of Tu ≈ 6%. The leading edge model was made of high conductivity epoxy in order to match the Biot number of an actual engine airfoil. Results of these tests showed that the film cooling performance with an oscillating stagnation line was degraded by as much as 25% compared to the performance of a steady flow with the stagnation line aligned with the row of holes at the leading edge.


Author(s):  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. The inlet purge flow was generated by a row of equally-spaced cylindrical injection holes inside a single-tooth generic stator-rotor seal. In addition to the traditional 90 degree (radial outward) injection for the inlet purge flow, injection at a 45 degree angle was adopted to create a circumferential/azimuthal velocity component toward the suction side of the blades, which created a swirl ratio (SR) of 0.6. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Slashface leakage flow was simulated by equally-spaced cylindrical injection holes inside a slot. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5%, 0.75%, to 1% for the inlet purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 (intermediate DR) and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio, and blowing ratio are studied. Computational simulations are performed using the realizable k–ɛ (RKE) turbulence model. Effectiveness obtained by computational fluid dynamics (CFD) simulations is compared with experiments. Three leading edge profiles, including one semicylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semicylinder model, shaped holes are located at 0 deg (stagnation line) and ±30 deg. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,000 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile on turbine blade leading edge region film cooling with shaped hole designs.


Sign in / Sign up

Export Citation Format

Share Document