scholarly journals An experimental study on the effect of tool geometry on tool wear and surface roughness in hard turning

2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095988
Author(s):  
Pham Minh Duc ◽  
Le Hieu Giang ◽  
Mai Duc Dai ◽  
Do Tien Sy

The main purpose of this study is to investigate the influence of tool geometry (cutting edge angle, rake angle, and inclination angle) and to optimize tool wear and surface roughness in hard turning of AISI 1055 (52HRC) hardened steel by using TiN coated mixed ceramic inserts. The results show that the inclination angle is the major factor affecting the tool wear and the surface roughness in hard turning. With the increase in negative rake and inclination angles, the tool wear decreases, and the surface roughness increases. However, the surface roughness will decrease when the inclination angle increases to overpass a certain limit. This is a new and significant point in the research of the hard turning process. From this result, the large negative inclination angle (λ = −10°) should be applied to reduce the surface roughness and the tool wear simultaneously. With the optimal cutting tool angles in the research, the hard machining process is improved remarkably with decreases of surface roughness and tool wear 8.3% and 41.3%, respectively in comparison with the standard tool angles. And the proposed tool-post design approach brings an effective method to change the tool insert angles using standard tool-holders to improve hard or other difficult-to-cut materials turning quality.

2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6106
Author(s):  
Waleed Ahmed ◽  
Hussien Hegab ◽  
Atef Mohany ◽  
Hossam Kishawy

It is necessary to improve the machinability of difficult-to-cut materials such as hardened steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the promising techniques used to provide proper tool life even under dry conditions. In this work, an attempt has been performed to analyze, model, and optimize the machining process of AISI 4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to (a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle on the surface quality and tool wear. Moreover, the current study implemented some artificial intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate, cutting velocity, and inclination angle were the selected design variables, while the tool wear, surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20°, and a feed rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of 70 m/min, an inclination angle of 10°, and a feed rate of 0.15 mm/rev. Moreover, different weights have been assigned for the three studied outputs to offer different optimized solutions based on the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated that the findings of the current work offer valuable recommendations to select the optimized cutting conditions when machining hardened steel AISI 4140 within the selected ranges.


2021 ◽  
Author(s):  
Cristian Cappellini ◽  
Andrea Abeni

Abstract This paper concerns the tool wear in hard turning of AISI 52100 hardened steel by means of PCBN tools. The purposes of this work are the development of a tool wear model and its implementation in a FEM-based procedure for predicting crater and flank wear progression during machining operations for studying the influence of tool wear on the process in terms of tool geometry modifications and stress variation on the tool. Deform 2D FEM software has been utilized to simulate the orthogonal cutting process and the tool wear model has been implemented into the software by means of a dedicated subroutine able to estimate the wear rate and to update the geometry of the worn tool. Previous performed research showed the employment of analytical models for the evaluation of crater wear of flank wear separately, and FEM models only for the crater depth evolution without pointing their attention on the behavior of flank width. A new analytical model, concerning both crater and flank wear, has been proposed and validated by the authors. The validation of the model has been achieved by the comparison between experimental and simulated wear parameters. For doing this, an extended experimental campaign has been accomplished. The comparison results have shown good agreement. Once validated, the FEM strategy has been utilized for examining the influence of tool wear on the effective rake angle and the related tool stresses, individuating the excessive positive rake angle value as the final tool breakage mechanism.


Author(s):  
Michaela Samardžiová ◽  
Miroslav Neslušan

Abstract Hard turning has been applied in machining since the early 1980s. There is an effort to substitute finish grinding by hard machining, because of machining by cutting tool with defined geometry. For machining of hardened steels (up to 45 HRC) are used two different cutting materials. PCBN are used the most for discontinuous machining of hardened steel (up to 63 HRC) and mixed ceramic tools, which are used in the experiment. This paper reports a development of surface roughness parameters when using wiper tool geometry of mixed ceramic tool and conventional geometry of mixed ceramic tool in hard turning. Roughness parameters (Ra, Rz, Rsk, Rku, RSm, Rdq) are measured when changing the feed, depth of cut and cutting speed are constant.


2013 ◽  
Vol 315 ◽  
pp. 241-245 ◽  
Author(s):  
Ali Davoudinejad ◽  
M.Y. Noordin ◽  
Danial Ghodsiyeh ◽  
Sina Alizadeh Ashrafi ◽  
Mohsen Marani Barzani

Hard turning is a dominant machining operation performed on hardened materials using single-point cutting tools. In recent years, hard turning operation has become more and more capable with respect to various machinability criteria. This work deals with machinability of hardened DF-3 tool steel with 55 ±1 HRC hardness at various cutting conditions in terms of tool life, tool wear mechanism and surface roughness. Continuous dry turning tests were carried out using coated, mixed ceramic insert with honed edge geometry. Two different cutting speeds, 100 and 210 m/min, and feed rate values of 0.05, 0.125 and 0.2 mm/rev were used with a 0.2 mm constant depth of cut for all tests. Additionally scanning electron microscope (SEM) was employed to clarify the different types of wear. As far as tool life was concerned, best result was achieved at lowest cutting condition whereas surface roughness values decreased when operating at higher cutting speed and lower feed rate. Additionally maximum volume of material removed is obtained at low cutting speed and high feed rate. Dominant wear mechanism observed during the experiments were flank and crater wear which is mainly caused by abrasive action of the hard workpiece material with the ceramic cutting tools.


2013 ◽  
Vol 581 ◽  
pp. 176-181 ◽  
Author(s):  
Ildikó Maňková ◽  
Jozef Beňo ◽  
Marek Vrabel'

Hard turning provides an alternative to grinding in some finishing operations. This paper deals with analysis of part surface finishing when turning hardened steel heat-treated on hardness of 46, 55 and 60 HRC with mixed oxide ceramic inserts. Average surface roughness Ra has been widely used in industry it is known that the single parameter Ra is inadequate to define the functionality of a surface. Two different surfaces with similar values of Ra can behave differently under loading conditions. The surface profile 2D and 3D parameters are assessed. The influence of workpiece hardness on surface roughness parameters and cutting force components is investigated. Results show that finish hard turning with mixed ceramic tool produces surface profile comparable to those produced by grinding.


Author(s):  
Mahendran Samykano ◽  
J. Kananathan ◽  
K. Kadirgama ◽  
A. K. Amirruddin ◽  
D. Ramasamy ◽  
...  

The present research attempts to develop a hybrid coolant by mixing alumina nanoparticles with cellulose nanocrystal (CNC) into ethylene glycol-water (60:40) and investigate the viability of formulated hybrid nanocoolant (CNC-Al2O3-EG-Water) towards enhancing the machining behavior. The two-step method has been adapted to develop the hybrid nanocoolant at various volume concentrations (0.1, 0.5, and 0.9%). Results indicated a significant enhancement in thermal properties and tribological behaviour of the developed hybrid coolant. The thermal conductivity improved by 20-25% compared to the metal working fluid (MWF) with thermal conductivity of 0.55 W/m℃. Besides, a reduction in wear and friction coefficient was observed with the escalation in the nanoparticle concentration. The machining performance of the developed hybrid coolant was evaluated using Minimum Quantity Lubrication (MQL) in the turning of mild steel. A regression model was developed to assess the deviations in the tool flank wear and surface roughness in terms of feed, cutting speed, depth of the cut, and nanoparticle concentration using Response Surface Methodology (RSM). The mathematical modeling shows that cutting speed has the most significant impact on surface roughness and tool wear, followed by feed rate. The depth of cut does not affect surface roughness or tool wear. Surface roughness achieved 24% reduction, 39% enhancement in tool length of cut, and 33.33% improvement in tool life span. From this, the surface roughness was primarily affected by spindle cutting speed, feed rate, and then cutting depth while utilising either conventional water or composite nanofluid as a coolant. The developed hybrid coolant manifestly improved the machining behaviour.


Sign in / Sign up

Export Citation Format

Share Document