scholarly journals Reliable speed control of a permanent magnet DC motor using fault-tolerant H-bridge

2020 ◽  
Vol 12 (10) ◽  
pp. 168781402097031
Author(s):  
Soban Ahmed ◽  
Arslan Ahmed Amin ◽  
Zaeema Wajid ◽  
Faizan Ahmad

Reliable, smooth, and fault free speed control of a Permanent Magnet (PM) DC motor using an H-bridge is an important need for many industrial applications such as robotics, automotive, and process industry to improve the overall efficiency and productivity. The reliability of H-bridge depends on the semiconductor switches used. The faults in these components can lead to a complete failure of the system. This paper presents a dual redundancy-based fault-tolerant system with a Fault Detection and Isolation (FDI) unit that can detect, isolate, and replace the faulty switch with the standby to prevent the unwanted shut down of the system and support the process continuity thereby increasing reliability. MATLAB/Simulink environment was used for simulation experiments and the results demonstrate the stable operation of the motor in the events of faults while maintaining its speed. The presented work establishes that the dual redundancy-based fault-tolerant H-bridge with the FDI unit is a highly reliable solution for the speed control of a DC motor.

2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


Author(s):  
C. Bharatiraj ◽  
JL Munda ◽  
Ishan Vaghasia ◽  
Rajesh Valiveti ◽  
P. Manasa

The DC motors an outstanding portion of apparatus in automotive and automation industrial applications requiring variable speed and load characteristics due to its ease of controllability. Creating an interface control system for multi DC motor drive operations with centralized speed control, from small-scale models to large industrial applications much demand. By using Lab VIEW (laboratory virtual instrument engineering workbench) as the motor controller, can control a DC motor for multiple purposes using single software environment. The aim of this paper is to propose the centralized speed control of DC motor using Lab VIEW. Here, the Lab VIEW is used for simulating the motor, whereas the input armature voltage of the DC motor is controlled using a virtual Knob in Lab VIEW software. The hardware part of the system (DC motor) and the software (in personal computer) are interfaced using a data acquisition card (DAQ) -Model PCI- 6024E. The voltage and Speed response is obtained using LABVIEW software. Using this software, group of motors’ speed can be controlled from different location using remote telemetry. The propose work also focuses on controlling the speed of the individual DC motor using PWM scheme (Duty cycle based Square wave generation) and DAQ. Help of the DAQ along with Lab VIEW front panel window, the DC motor speed and directions can be change easily in remote way. In order to test the proposed system the laboratory model for an 80W DC motor group (multi drive) is developed for different angular displacements and directions of the motor. The simulation model and experimental results conforms the advantages and robustness of the proposed centralized speed control.


2016 ◽  
Vol 26 (02) ◽  
pp. 1750032 ◽  
Author(s):  
Hechmi Ben Azza ◽  
Mongi Moujahed ◽  
Mohamed Jemli ◽  
Mohamed Boussak

This paper presents the development and experimentation of Fault-Tolerant Control (FTC) for sensorless Permanent Magnet Synchronous Motor (PMSM) drive with stator resistance tuning. In the fault-tolerant inverter, a redundant leg is added to replace the faulted leg. Consequently, the proposed inverter is a modified topology inverter with fault-tolerant capability, which can be configured as 3-phase 8-switch inverter. The detection of the faulty leg is based only on the output inverter currents measurement. To make toggle to a redundant leg in case of fault occurrence, a Fault Detection and Isolation (FDI) algorithm is proposed in this paper. Experimental results are presented using a 1.4[Formula: see text]kW, three poles three-phases PMSM. These results show that the proposed FDI algorithm is able to detect and to isolate the open-phase fault in PMSM drive.


Sign in / Sign up

Export Citation Format

Share Document