scholarly journals Measurement of unidirectional pose accuracy and repeatability of the collaborative robot UR5

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097289
Author(s):  
Martin Pollák ◽  
Marek Kočiško ◽  
Dušan Paulišin ◽  
Petr Baron

The article describes the measurement of unidirectional pose accuracy and repeatability of a collaborative robot. The objective of the measurements is to investigate and evaluate unidirectional accuracy of the six-axis collaborative robot UR5 of the company Universal Robots. The measurement methodology was based on outlining an imaginary ISO cube placed in the robot’s workspace, in which the robot’s tool centre point (TCP) attained five measurement points in thirty measurement cycles. A video camera and six linear incremental sensors with six evaluation units were used for the measurement. The measured values are presented and applied according to the ISO 9283 standard. On the basis of the measurement, we verified technical specifications of unidirectional pose accuracy and repeatability of the robotic arm UR5 specified by its producer.

2021 ◽  
Vol 11 (12) ◽  
pp. 5398
Author(s):  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
Aleš Vysocký ◽  
Václav Krys ◽  
Jakub Šafařík ◽  
...  

We describe a method for robotic cell optimization by changing the placement of the robot manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of each joint during the whole trajectory, which depends on the joint angular velocity and torque. The method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot joints for individual robot positions. Verification of the method was performed using CoppeliaSim and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from 22% to 53% depending on the trajectory.


2020 ◽  
Vol 34 (06) ◽  
pp. 10402-10409
Author(s):  
Tianying Wang ◽  
Wei Qi Toh ◽  
Hao Zhang ◽  
Xiuchao Sui ◽  
Shaohua Li ◽  
...  

Robotic drawing has become increasingly popular as an entertainment and interactive tool. In this paper we present RoboCoDraw, a real-time collaborative robot-based drawing system that draws stylized human face sketches interactively in front of human users, by using the Generative Adversarial Network (GAN)-based style transfer and a Random-Key Genetic Algorithm (RKGA)-based path optimization. The proposed RoboCoDraw system takes a real human face image as input, converts it to a stylized avatar, then draws it with a robotic arm. A core component in this system is the AvatarGAN proposed by us, which generates a cartoon avatar face image from a real human face. AvatarGAN is trained with unpaired face and avatar images only and can generate avatar images of much better likeness with human face images in comparison with the vanilla CycleGAN. After the avatar image is generated, it is fed to a line extraction algorithm and converted to sketches. An RKGA-based path optimization algorithm is applied to find a time-efficient robotic drawing path to be executed by the robotic arm. We demonstrate the capability of RoboCoDraw on various face images using a lightweight, safe collaborative robot UR5.


Robotica ◽  
1996 ◽  
Vol 14 (1) ◽  
pp. 103-109 ◽  
Author(s):  
B. Eldridge ◽  
K. Gruben ◽  
D. LaRose ◽  
J. Funda ◽  
S. Gomory ◽  
...  

SummaryWe have designed a robotic arm based on a double parallel four bar linkage to act as an assistant in minimally invasive surgical procedures. The remote center of motion (RCM) geometry of the robot arm kinematically constraints the robot motion such that minimal translation of an instrument held by the robot takes place at the entry portal into the patientApos;s body. In addition to the two rotational degrees of freedom comprising the RCM arm, distal translation and rotation are provided to manoeuver the instrument within the patient's body about an axis coincident with the RCM. An XYZ translation stage located proximal to the RCM arm provides positioning capability to establish the RCM location relative to the patients anatomy. An electronics set capable of controlling the system, as well as performing a series of safety checks to verify correct system operation, has also been designed and constructed. The robot is capable of precise positional motion. Repeatability in the ±10 micron range is demonstrated. The complete robotic system consists of the robot hardware and an IBM PC-AT based servo controller connected via a custom shared memory link to a host IBM PS/2. For laparoscopic applications, the PS/2 includes an image capture board to capture and process video camera images. A camera rotation stage has also been designed for this application. We have successfully demonstrated this system as an assistant in a laparoscopic cholecystectomy. Further applications for this system involving active tissue manipulation are under development.


Author(s):  
Yash Gujarati ◽  
◽  
Ravindra Thamma

This paper presents the development of a sixaxis force/torque (FTS) sensor using crossbeams for a robotic arm. The sensor produced in this paper is a new unique design that was developed under rigorous trial and testing using finite element analysis (FEA) at every stage of development. Additionally, the FTS presented uses strain gauge technology and data-acquisition (DAQ) to measure and record forces in Fx, Fy, and Fz direction along with torque in Mx, My, and Mz direction. FTS was tested, calibrated, and fitted on a robotic arm to test its accuracy and repeatability


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Longtao Mu ◽  
Yunfei Zhou ◽  
Tiebiao Zhao

Abstract This paper studies the robot arm sorting position control based on robot operation system (ROS), which works depending on the characteristics of the robot arm sorting operation using the top method, to automate the sorting operation and improve the work efficiency of workpiece sorting. Through the ROS MoveIt! module, the sorting pose and movement path of the robotic arm are planned, the inverse kinematics of the sorting robotic arm is solved, and the movement pose characteristics of the sorting robotic arm are analysed. The robot arm model was created using Solidworks software, and the URDF model file of the robot arm was exported through the sw2urdf plugin conversion tool, and the parameters were configured. Based on ROS for 6-degree-of-freedom (DOF) robot motion simulation, random extended tree (RRT) algorithm from open motion planning library (OMPL) is selected. The robot motion planning analysis and sorting manipulator drive UR5 manipulator. The results show that the sorting pose and motion trajectory of the robot arm are determined by controlling the sorting pose of the sorting robot arm, and the maximum radius value of the tool centre point (TCP) rotation of the robot arm and the position of the workpiece are obtained. This method can improve the success rate of industrial sorting robots in grabbing objects. This analysis is of great significance to the research of robots’ autonomous object grabbing.


2021 ◽  
Vol 7 (1) ◽  
pp. 162-165
Author(s):  
Deutschland Muralidhar ◽  
Shiva Sirasala ◽  
Venkata Jammalamadaka ◽  
Moritz Spiller ◽  
Thomas Sühn ◽  
...  

Abstract Under-staffing of nurses is a significant problem in most countries. It is expected to rise in the coming years, making it challenging to perform crucial tasks like assessing a patient's condition, assisting the surgeon in medical procedures, catheterization and Blood Transfusion etc., Automation of some essential tasks would be a viable idea to overcome this shortage of nurses. One such task intended to automate is the role of a 'Scrub Nurse' by using a robotic arm to hand over the surgical instruments. In this project, we propose to use a Collaborative Robotic-arm as a Scrub nurse that can be controlled with voice commands. The robotic arm was programmed to reach the specified position of the instruments placed on the table equipped with a voice recognition module to recognize the requested surgical instrument. When the Surgeon says "Pick Instrument", the arm picks up the instrument from the table and moves it over to the prior defined handover position. The Surgeon can take over the instrument by saying the command "Drop". Safe pathways for automatic movement of arm and handover position will be predefined by the Surgeon manually. This concept was developed considering the convenience of the Surgeon and the patient's safety, tested for collision, noisy environments, positioning failures and accuracy in grasping the instruments. Limitations that need to be considered in future work are the recognition of voice commands which as well as the returning of the instruments by the surgeon in a practical and safe way.


Author(s):  
Curtis L. Collins ◽  
Matthew L. Robinson

The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames. A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.


Author(s):  
S. S. Arawade

In this literature, recent development in control and performance enhancement of SCARA(Selective Compliance Articulated Robotic Arm) robotic arm is reviewed. SCARA robotic arm is very popular in the manufacturing industry for its positioning accuracy and repeatability. The SCARA robot has higher flexibility in the horizontal plane and great robustness for vertical motion. This makes the SCARA robot a perfect device for pick and place applications. In the paper, the Kinematic analysis based on DH formulation of the RPR (Revolute-Prismatic-Revolute) configuration-based SCARA robotic arm is presented. In recent years the main focus of the research was to achieve the accurate positioning of the end effector by using different control systems and process algorithms.


Author(s):  
Michael Shomin ◽  
Jonathan Fiene

In this paper, we examine the creation and benefits of a new teaching platform to introduce and reinforce the key concepts of robotic manipulators in an introductory-level robotics course. This system combines a vintage PUMA 260 six-degree-of-freedom robotic arm with modern control circuitry and a Matlab API. The API operates as a servo controller for the robot, thereby allowing students to apply their knowledge of inverse kinematics to a real manipulator arm. To further motivate the exploration of manipulators, we have developed an open-ended project where students engage in the art of three-dimensional light painting. To facilitate this activity, a tricolor LED has been affixed to the end-effector of the robot. With a digital SLR camera, we take a long-exposure photograph as the robot is driven through a trajectory, effectively painting a picture with the end effector. We have also developed a method to quickly assemble pseudo-long-exposure photographs and videos using an inexpensive video camera. We believe this novel setup and project are an effective way to engage and motivate students to learn the underlying math and dynamics of robotic manipulators.


2020 ◽  
Vol 10 (22) ◽  
pp. 8241
Author(s):  
Aleš Vysocký ◽  
Richard Papřok ◽  
Jakub Šafařík ◽  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
...  

Improved energy usage efficiency is a common goal for economic and environmental reasons. In this manuscript, we present a new approach for the execution of a point-to-point robot motion. The energy efficiency of an industrial or collaborative robot is increased by the reduction of the energy consumption during nontechnological, path-independent movements. The novel trajectory generation method relies on particle swarm optimization with a Bezier curve interpolator. We present the effectiveness of the algorithm on several chosen trajectories, where the best result yields up to 40% energy saving, while the worst is still at least 10%. We verified the results of our method by real-world tests on a UR3 robotic arm.


Sign in / Sign up

Export Citation Format

Share Document