scholarly journals Research on a small sample fault diagnosis method for a high-pressure common rail system

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110461
Author(s):  
Liangyu Li ◽  
Su Tiexiong ◽  
Fukang Ma ◽  
Yu Pu

In the fault diagnosis of high-pressure common rail diesel engines, it is often necessary to face the problem of insufficient diagnostic training samples due to the high cost of obtaining fault samples or the difficulty of obtaining fault samples, resulting in the inability to diagnose the fault state. To solve the above problem, this paper proposes a small-sample fault diagnosis method for a high-pressure common rail system using a small-sample learning method based on data augmentation and a fault diagnosis method based on a GA_BP neural network. The data synthesis of the training set using Least Squares Generative Adversarial Networks (LSGANs) improves the quality and diversity of the synthesized data. The correct diagnosis rate can reach 100% for the small sample set, and the iteration speed increases by 109% compared with the original BP neural network by initializing the BP neural network with an improved genetic algorithm. The experimental results show that the present fault diagnosis method generates higher quality and more diverse synthetic data, as well as a higher correct rate and faster iteration speed for the fault diagnosis model when solving small sample fault diagnosis problems. Additionally, the overall fault diagnosis correct rate can reach 98.3%.

Measurement ◽  
2021 ◽  
Vol 170 ◽  
pp. 108716
Author(s):  
Quan Dong ◽  
Xiyu Yang ◽  
Hao Ni ◽  
Jingdong Song ◽  
Changhao Lu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5481
Author(s):  
Qinpeng Wang ◽  
Heming Yao ◽  
Yonghua Yu ◽  
Jianguo Yang ◽  
Yuhai He

In this paper, the high-pressure common rail system of the marine diesel engine is taken as case study to establish a real-time simulation model of the high-pressure common rail system that can be used as the controlled object of the control system. On the premise of ensuring accuracy, the real-time simulation should also respond quickly to instructions issued by the control system. The development of the real-time simulation is based on the modular modeling method, and the high-pressure common rail system is divided into submodels, including the high-pressure oil pump, common rail tube, injector, and mass conversion. The submodels are built using the “surrogate model” method, which is mainly composed of MAP data and empirical formulas. The data used to establish the real-time simulation are not only from the empirical research into the high-pressure common rail system, but also from simulations of the high-pressure common rail system undertaken in AEMSim. The data obtained from this real-time simulation were compared with the experimental data to verify the model. The error in fuel injection quality is less than 5%, under different pressures and injection durations. In order to carry out dynamic verification, the PID control strategy, the model-based control strategy, and the established real-time simulation are all closed-loop tested. The results show that the developed real-time simulation can simulate the rail pressure wave caused by cyclic injection according to the control signal, and can feedback the control effect of different control strategies. Through verification, it is clear that the real-time simulation of the high-pressure common rail system can depict the rail pressure fluctuation caused by each cycle of fuel injection, while ensuring the accuracy and responsiveness of the simulation, which provides the ideal conditions for the study of a rail pressure control strategy.


2012 ◽  
Author(s):  
Robert W. Warden ◽  
Edwin A. Frame ◽  
Douglas M. Yost ◽  
Patsy A. Muzzell ◽  
Eric R. Sattler

Sign in / Sign up

Export Citation Format

Share Document