scholarly journals Effect of filler carbonization on agro-waste based ceiling board

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199440
Author(s):  
Obiora Nnaemeka Ezenwa ◽  
Echezona Nnaemeka Obika ◽  
Onyemazuwa Andrew Azaka ◽  
Emmanuel Chinagorom Nwadike

This work presents the use as a filler of carbonized breadfruit seed coat and recycled low density polyethylene as the binder in ceiling board manufacturing. The depulped bread fruit seed was carbonized for 2 h at a temperature of 500°C. The experimental design was set up using the Design Expert software. A total of 30 experimental tests were developed for four parameters and three responses. The parameters are carbonized bread fruit seed coat/recycled Low Density Polyethylene mass ratio (filler-binder mass ratio), compaction time, compaction temperature and compaction pressure while the responses are thermal conductivity, thickness swell and water absorption. The models developed have been validated using the Study of Variance (ANOVA). Using the 3D surface map, the influence of the parameters on the responses was studied. The optimization method of the Design Expert program was used to evaluate the optimal level of the parameters that will produce the best possible result from their combination. The result gave optimal values of 16.206% filler/rLDPE, 9.406minutes compaction time, 200°C compaction temperature and 11 MPa compaction pressure, which gave 0.246% Water Absorption, 1.998% Thickness Swell and 2.898 W/M.K Thermal Conductivity.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


Heliyon ◽  
2019 ◽  
Vol 5 (11) ◽  
pp. e02712 ◽  
Author(s):  
O.N. Ezenwa ◽  
E.N. Obika ◽  
C. Umembamalu ◽  
F.C. Nwoye

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Negasi Gebremedhin ◽  
Gideon K. Rotich

Plastic has been a dominant material for packaging in recent years but due to its nonbiodegradability, it is causing environmental pollution. Among the plastics used, low-density polyethylene is used abundantly. These plastics can be removed from the environment by recycling into useful products through reinforcing it with natural textile fibers into composite materials. Natural fiber-based composites are ecofriendly and low cost. This research is aimed at manufacturing composite wall tiles from recycled low-density polyethylene reinforced with pineapple leaf fibers (PALF). The PALF was extracted by the retting process followed by mechanical scratching and treated with 5% NaOH to improve the fiber-matrix interaction. The composites were manufactured by the melt-mixing method followed by compression molding. The effects of fiber length and fiber weight proportion on composite properties were investigated using tensile, flexural, impact, and water absorption tests. The study showed that the optimum fiber weight proportion and fiber length for the optimal properties of the composite were achieved at 30% fiber weight proportion and 30 mm fiber length. The maximum tensile strength of 1562 N/mm2, flexural strength of 454.9 N/mm2, and impact strength of 225.2 J/mm2 were obtained. Water absorption of the tiles increased with the increase in both the fiber weight proportion and the fiber length.


Author(s):  
Maria Cecíllia Ramos de Araújo Veloso ◽  
Mário Vanoli Scatolino ◽  
Maria Margarida Boavida Pontes Gonçalves ◽  
Mara Lúcia Agostini Valle ◽  
Thiago de Paula Protásio ◽  
...  

2021 ◽  
pp. 50559
Author(s):  
Pamela Rodrigues Passos Severino ◽  
Natália Ferreira Braga ◽  
Guilherme Ferreira Morgado ◽  
Juliano Marini ◽  
Orestes Ferro ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


Sign in / Sign up

Export Citation Format

Share Document