scholarly journals Smoke recognition network based on dynamic characteristics

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092566
Author(s):  
Dahan Wang ◽  
Sheng Luo ◽  
Li Zhao ◽  
Xiaoming Pan ◽  
Muchou Wang ◽  
...  

Fire is a fierce disaster, and smoke is the early signal of fire. Since such features as chrominance, texture, and shape of smoke are very special, a lot of methods based on these features have been developed. But these static characteristics vary widely, so there are some exceptions leading to low detection accuracy. On the other side, the motion of smoke is much more discriminating than the aforementioned features, so a time-domain neural network is proposed to extract its dynamic characteristics. This smoke recognition network has these advantages:(1) extract the spatiotemporal with the 3D filters which work on dynamic and static characteristics synchronously; (2) high accuracy, 87.31% samples being classified rightly, which is the state of the art even in a chaotic environments, and the fuzzy objects for other methods, such as haze, fog, and climbing cars, are distinguished distinctly; (3) high sensitiveness, smoke being detected averagely at the 23rd frame, which is also the state of the art, which is meaningful to alarm early fire as soon as possible; and (4) it is not been based on any hypothesis, which guarantee the method compatible. Finally, a new metric, the difference between the first frame in which smoke is detected and the first frame in which smoke happens, is proposed to compare the algorithms sensitivity in videos. The experiments confirm that the dynamic characteristics are more discriminating than the aforementioned static characteristics, and smoke recognition network is a good tool to extract compound feature.

2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-27
Author(s):  
Tian Tan ◽  
Yue Li ◽  
Xiaoxing Ma ◽  
Chang Xu ◽  
Yannis Smaragdakis

Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results. In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next level. Briefly, Unity-Relay is a one-two punch: given a set of different selective context-sensitivity approaches, say S = S1, . . . , Sn, Unity-Relay first provides a mechanism (called Unity)to combine and maximize the precision of all components of S. When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to pass and accumulate the precision from one approach Si in S to the next, Si+1, leading to an analysis that is more precise than all approaches in S. As a proof-of-concept, we instantiate Unity-Relay into a tool called Baton and extensively evaluate it on a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with the state of the art, Baton achieves the best precision for all metrics and clients for all evaluated programs. The difference in precision is often dramatic — up to 71% of alias pairs reported by previously-best algorithms are found to be spurious and eliminated.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 280
Author(s):  
Li Liu ◽  
Dawei Wang ◽  
Wei Rao

Swimming motors navigating in complex fluidic environments have received tremendous attention over the last decade. In particular, liquid metal (LM) as a new emerging material has shown considerable potential in furthering the development of swimming motors, due to their unique features such as fluidity, softness, reconfigurability, stimuli responsiveness, and good biocompatibility. LM motors can not only achieve directional motion but also deformation due to their liquid nature, thus providing new and unique capabilities to the field of swimming motors. This review aims to provide an overview of the recent advances of LM motors and compare the difference in LM macro and micromotors from fabrication, propulsion, and application. Here, LM motors below 1 cm, named mini/micro/nano scale liquid metal motors (MLMTs) will be discussed. This work will present physicochemical characteristics of LMs and summarize the state-of-the-art progress in MLMTs. Finally, future outlooks including both opportunities and challenges of mini/micro/nano scale liquid metal motors are also provided.


2021 ◽  
Author(s):  
Bo Shen ◽  
Zhenyu Kong

Anomaly detection aims to identify the true anomalies from a given set of data instances. Unsupervised anomaly detection algorithms are applied to an unlabeled dataset by producing a ranked list based on anomaly scores. Unfortunately, due to the inherent limitations, many of the top-ranked instances by unsupervised algorithms are not anomalies or not interesting from an application perspective, which leads to high false-positive rates. Active anomaly discovery (AAD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information and incorporate it into the anomaly detection algorithm to improve the detection accuracy iteratively. However, labeling is often costly. Therefore, the way to balance detection accuracy and labeling cost is essential. Along this line, this paper proposes a novel AAD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised anomaly detection algorithm, namely, Isolation Forest, to extract features. Thereafter, the sparsity of the extracted features is utilized to improve its anomaly detection performance. To enforce the sparsity of the features and subsequent improvement of the detection analysis, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Anomaly Discovery (SALAD), is proposed with its theoretical Regret analysis. Extensive experiments on both open-source and additive manufacturing datasets demonstrate that the proposed algorithm significantly outperforms the state-of-the-art algorithms for anomaly detection.


Author(s):  
Shoujin Wang ◽  
Liang Hu ◽  
Yan Wang ◽  
Quan Z. Sheng ◽  
Mehmet Orgun ◽  
...  

A session-based recommender system (SBRS) suggests the next item by modeling the dependencies between items in a session. Most of existing SBRSs assume the items inside a session are associated with one (implicit) purpose. However, this may not always be true in reality, and a session may often consist of multiple subsets of items for different purposes (e.g., breakfast and decoration). Specifically, items (e.g., bread and milk) in a subsethave strong purpose-specific dependencies whereas items (e.g., bread and vase) from different subsets have much weaker or even no dependencies due to the difference of purposes. Therefore, we propose a mixture-channel model to accommodate the multi-purpose item subsets for more precisely representing a session. Filling gaps in existing SBRSs, this model recommends more diverse items to satisfy different purposes. Accordingly, we design effective mixture-channel purpose routing networks (MCPRN) with a purpose routing network to detect the purposes of each item and assign it into the corresponding channels. Moreover, a purpose specific recurrent network is devised to model the dependencies between items within each channel for a specific purpose. The experimental results show the superiority of MCPRN over the state-of-the-art methods in terms of both recommendation accuracy and diversity.  


2021 ◽  
Author(s):  
Bo Shen ◽  
Zhenyu Kong

Anomaly detection aims to identify the true anomalies from a given set of data instances. Unsupervised anomaly detection algorithms are applied to an unlabeled dataset by producing a ranked list based on anomaly scores. Unfortunately, due to the inherent limitations, many of the top-ranked instances by unsupervised algorithms are not anomalies or not interesting from an application perspective, which leads to high false-positive rates. Active anomaly discovery (AAD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information and incorporate it into the anomaly detection algorithm to improve the detection accuracy iteratively. However, labeling is often costly. Therefore, the way to balance detection accuracy and labeling cost is essential. Along this line, this paper proposes a novel AAD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised anomaly detection algorithm, namely, Isolation Forest, to extract features. Thereafter, the sparsity of the extracted features is utilized to improve its anomaly detection performance. To enforce the sparsity of the features and subsequent improvement of the detection analysis, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Anomaly Discovery (SALAD), is proposed with its theoretical Regret analysis. Extensive experiments on both open-source and additive manufacturing datasets demonstrate that the proposed algorithm significantly outperforms the state-of-the-art algorithms for anomaly detection.


Author(s):  
Rotimi-Williams Bello ◽  
Ahmad Sufril Azlan Mohamed ◽  
Abdullah Zawawi Talib ◽  
Salisu Sani ◽  
Mohd Nadhir Ab Wahab

Background: One important indicator for the wellbeing status of livestock is their daily behavior. More often than not, daily behavior recognition involves detecting the heads or body gestures of the livestock using conventional methods or tools. To prevail over such limitations, an effective approach using deep learning is proposed in this study for cattle behavior recognition. Methods: The approach for detecting the behavior of individual cows was designed in terms of their eating, drinking, active, and inactive behaviors captured from video sequences and based on the investigation of the attributes and practicality of the state-of-the-art deep learning methods. Result: Among the four models employed, Mask R-CNN achieved average recognition accuracies of 93.34%, 88.03%, 93.51% and 93.38% for eating, drinking, active and inactive behaviors. This implied that Mask R-CNN achieved higher cow detection accuracy and speed than the remaining models with 20 fps, making the proposed approach competes favorably well with other approaches and suitable for behavior recognition of group-ranched cattle in real-time.


2017 ◽  
Vol 72 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Rodolfo Baggio

Purpose In recent years, network science has become a dynamic and promising discipline. This study aims to provide a brief summary of the subject and the application to the tourism domain. Design/methodology/approach This paper is based on a non-exhaustive survey of the literature. Findings The state-of-the-art of network science in tourism is explored and discussed, together with possible future developments. Research limitations/implications This paper uses a limited set of works, those deemed the most significant to sketch the situation. The choice might be subjective, but the overall picture is clear. Given what accomplished so far, the methods of network science seem interesting both for their theoretical and practical outcomes. In essence, they provide a better and more objective view on the structural and dynamic characteristics of the tourism phenomenon and of the different tourism systems and components. Originality/value This paper critically reflects on the state of network science and its application to the tourism domain. Even without claiming to be complete, this paper takes a general perspective approach rather than examining single topics or issues.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document