scholarly journals A Novel Active Anomaly Discovery Method and its Applications in Additive Manufacturing

Author(s):  
Bo Shen ◽  
Zhenyu Kong

Anomaly detection aims to identify the true anomalies from a given set of data instances. Unsupervised anomaly detection algorithms are applied to an unlabeled dataset by producing a ranked list based on anomaly scores. Unfortunately, due to the inherent limitations, many of the top-ranked instances by unsupervised algorithms are not anomalies or not interesting from an application perspective, which leads to high false-positive rates. Active anomaly discovery (AAD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information and incorporate it into the anomaly detection algorithm to improve the detection accuracy iteratively. However, labeling is often costly. Therefore, the way to balance detection accuracy and labeling cost is essential. Along this line, this paper proposes a novel AAD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised anomaly detection algorithm, namely, Isolation Forest, to extract features. Thereafter, the sparsity of the extracted features is utilized to improve its anomaly detection performance. To enforce the sparsity of the features and subsequent improvement of the detection analysis, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Anomaly Discovery (SALAD), is proposed with its theoretical Regret analysis. Extensive experiments on both open-source and additive manufacturing datasets demonstrate that the proposed algorithm significantly outperforms the state-of-the-art algorithms for anomaly detection.

2021 ◽  
Author(s):  
Bo Shen ◽  
Zhenyu Kong

Anomaly detection aims to identify the true anomalies from a given set of data instances. Unsupervised anomaly detection algorithms are applied to an unlabeled dataset by producing a ranked list based on anomaly scores. Unfortunately, due to the inherent limitations, many of the top-ranked instances by unsupervised algorithms are not anomalies or not interesting from an application perspective, which leads to high false-positive rates. Active anomaly discovery (AAD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information and incorporate it into the anomaly detection algorithm to improve the detection accuracy iteratively. However, labeling is often costly. Therefore, the way to balance detection accuracy and labeling cost is essential. Along this line, this paper proposes a novel AAD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised anomaly detection algorithm, namely, Isolation Forest, to extract features. Thereafter, the sparsity of the extracted features is utilized to improve its anomaly detection performance. To enforce the sparsity of the features and subsequent improvement of the detection analysis, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Anomaly Discovery (SALAD), is proposed with its theoretical Regret analysis. Extensive experiments on both open-source and additive manufacturing datasets demonstrate that the proposed algorithm significantly outperforms the state-of-the-art algorithms for anomaly detection.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1017 ◽  
Author(s):  
Abdulmohsen Almalawi ◽  
Adil Fahad ◽  
Zahir Tari ◽  
Asif Irshad Khan ◽  
Nouf Alzahrani ◽  
...  

Supervisory control and data acquisition (SCADA) systems monitor and supervise our daily infrastructure systems and industrial processes. Hence, the security of the information systems of critical infrastructures cannot be overstated. The effectiveness of unsupervised anomaly detection approaches is sensitive to parameter choices, especially when the boundaries between normal and abnormal behaviours are not clearly distinguishable. Therefore, the current approach in detecting anomaly for SCADA is based on the assumptions by which anomalies are defined; these assumptions are controlled by a parameter choice. This paper proposes an add-on anomaly threshold technique to identify the observations whose anomaly scores are extreme and significantly deviate from others, and then such observations are assumed to be ”abnormal”. The observations whose anomaly scores are significantly distant from ”abnormal” ones will be assumed as ”normal”. Then, the ensemble-based supervised learning is proposed to find a global and efficient anomaly threshold using the information of both ”normal”/”abnormal” behaviours. The proposed technique can be used for any unsupervised anomaly detection approach to mitigate the sensitivity of such parameters and improve the performance of the SCADA unsupervised anomaly detection approaches. Experimental results confirm that the proposed technique achieved a significant improvement compared to the state-of-the-art of two unsupervised anomaly detection algorithms.


2020 ◽  
Vol 12 (20) ◽  
pp. 3387
Author(s):  
Ferdi Andika ◽  
Mia Rizkinia ◽  
Masahiro Okuda

Anomaly detection is one of the most challenging topics in hyperspectral imaging due to the high spectral resolution of the images and the lack of spatial and spectral information about the anomaly. In this paper, a novel hyperspectral anomaly detection method called morphological profile and attribute filter (MPAF) algorithm is proposed. Aiming to increase the detection accuracy and reduce computing time, it consists of three steps. First, select a band containing rich information for anomaly detection using a novel band selection algorithm based on entropy and histogram counts. Second, remove the background of the selected band with morphological profile. Third, filter the false anomalous pixels with attribute filter. A novel algorithm is also proposed in this paper to define the maximum area of anomalous objects. Experiments were run on real hyperspectral datasets to evaluate the performance, and analysis was also conducted to verify the contribution of each step of MPAF. The results show that the performance of MPAF yields competitive results in terms of average area under the curve (AUC) for receiver operating characteristic (ROC), precision-recall, and computing time, i.e., 0.9916, 0.7055, and 0.25 s, respectively. Compared with four other anomaly detection algorithms, MPAF yielded the highest average AUC for ROC and precision-recall in eight out of thirteen and nine out of thirteen datasets, respectively. Further analysis also proved that each step of MPAF has its effectiveness in the detection performance.


2015 ◽  
Vol 10 (4) ◽  
pp. 687-694 ◽  
Author(s):  
Stefano Fortunati ◽  
Fulvio Gini ◽  
Maria S. Greco ◽  
Alfonso Farina ◽  
Antonio Graziano ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092566
Author(s):  
Dahan Wang ◽  
Sheng Luo ◽  
Li Zhao ◽  
Xiaoming Pan ◽  
Muchou Wang ◽  
...  

Fire is a fierce disaster, and smoke is the early signal of fire. Since such features as chrominance, texture, and shape of smoke are very special, a lot of methods based on these features have been developed. But these static characteristics vary widely, so there are some exceptions leading to low detection accuracy. On the other side, the motion of smoke is much more discriminating than the aforementioned features, so a time-domain neural network is proposed to extract its dynamic characteristics. This smoke recognition network has these advantages:(1) extract the spatiotemporal with the 3D filters which work on dynamic and static characteristics synchronously; (2) high accuracy, 87.31% samples being classified rightly, which is the state of the art even in a chaotic environments, and the fuzzy objects for other methods, such as haze, fog, and climbing cars, are distinguished distinctly; (3) high sensitiveness, smoke being detected averagely at the 23rd frame, which is also the state of the art, which is meaningful to alarm early fire as soon as possible; and (4) it is not been based on any hypothesis, which guarantee the method compatible. Finally, a new metric, the difference between the first frame in which smoke is detected and the first frame in which smoke happens, is proposed to compare the algorithms sensitivity in videos. The experiments confirm that the dynamic characteristics are more discriminating than the aforementioned static characteristics, and smoke recognition network is a good tool to extract compound feature.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 201
Author(s):  
Qinfeng Xiao ◽  
Jing Wang ◽  
Youfang Lin ◽  
Wenbo Gongsa ◽  
Ganghui Hu ◽  
...  

We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods are promising for extracting representations from complex features. These methods train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume that anomalies fail to perform well on the auxiliary task since they are never trained during the model optimization. However, the assumption does not always hold in practice. Deep models may also perform the auxiliary task well on anomalous samples, leading to the failure detection of anomalies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of the teacher-student distillation is able to deal with high-dimensional complex features. In addition, an ensemble of student networks provides a better capability to avoid generalizing the auxiliary task performance on anomalous samples. To validate the effectiveness of our model, we conduct extensive experiments on real-world datasets. Experimental results show superior performance of DTSNE over competing methods. Analysis and discussion towards the behavior of our model are also provided in the experiment section.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


Author(s):  
Pil-Ho Lee ◽  
Haseung Chung ◽  
Sang Won Lee ◽  
Jeongkon Yoo ◽  
Jeonghan Ko

This paper reviews the state-of-the-art research related to the dimensional accuracy in additive manufacturing (AM) processes. It is considered that the improvement of dimensional accuracy is one of the major scientific challenges to enhance the qualities of the products by AM. This paper analyzed the studies for commonly used AM techniques with respect to dimensional accuracy. These studies are classified by process characteristics, and relevant accuracy issues are examined. The accuracies of commercial AM machines are also listed. This paper also discusses suggestions for accuracy improvement. With the increase of the dimensional accuracy, not only the application of AM processes will diversify but also their value will increase.


Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


Sign in / Sign up

Export Citation Format

Share Document