scholarly journals ​Behavior Recognition of Group-ranched Cattle from Video Sequences using Deep Learning

Author(s):  
Rotimi-Williams Bello ◽  
Ahmad Sufril Azlan Mohamed ◽  
Abdullah Zawawi Talib ◽  
Salisu Sani ◽  
Mohd Nadhir Ab Wahab

Background: One important indicator for the wellbeing status of livestock is their daily behavior. More often than not, daily behavior recognition involves detecting the heads or body gestures of the livestock using conventional methods or tools. To prevail over such limitations, an effective approach using deep learning is proposed in this study for cattle behavior recognition. Methods: The approach for detecting the behavior of individual cows was designed in terms of their eating, drinking, active, and inactive behaviors captured from video sequences and based on the investigation of the attributes and practicality of the state-of-the-art deep learning methods. Result: Among the four models employed, Mask R-CNN achieved average recognition accuracies of 93.34%, 88.03%, 93.51% and 93.38% for eating, drinking, active and inactive behaviors. This implied that Mask R-CNN achieved higher cow detection accuracy and speed than the remaining models with 20 fps, making the proposed approach competes favorably well with other approaches and suitable for behavior recognition of group-ranched cattle in real-time.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Nadim Arubai ◽  
Omar Hamdoun ◽  
Assef Jafar

Applying deep learning methods, this paper addresses depth prediction problem resulting from single monocular images. A vector of distances is predicted instead of a whole image matrix. A vector-only prediction decreases training overhead and prediction periods and requires less resources (memory, CPU). We propose a module which is more time efficient than the state-of-the-art modules ResNet, VGG, FCRN, and DORN. We enhanced the network results by training it on depth vectors from other levels (we get a new level by changing the Lidar tilt angle). The predicted results give a vector of distances around the robot, which is sufficient for the obstacle avoidance problem and many other applications.


Author(s):  
Hanna Pamula ◽  
Agnieszka Pocha ◽  
Maciej Klaczynski

Every year billions of birds migrate between their breeding and wintering areas. As birds are an important indicator in nature conservation, migratory bird studies have been conducted for many decades, mostly by bird-ringing programmes and direct observation. However, most birds migrate at night, and therefore much information about their migration is lost. Novel methods have been developed to overcome this difficulty; including thermal imaging, radar, geolocation techniques, and acoustic recognition of bird calls. Many bird species are detected by their characteristic sounds. This method of identification occurs more often than by direct observation, and therefore recordings are widely used in avian research. The commonly used approach is to record the birds automatically, and to manually study the bird sounds in the recordings afterwards (Furnas and Callas 2015, Frommolt 2017). However, the tagging of recordings is a tedious and time-consuming process that requires expert knowledge, and, as a result, automatic detection of flight calls is in high demand. The first experiments towards this used energy thresholds or template matching (Bardeli et al. 2010, Towsey et al. 2012), and later on the machine and deep learning methods were applied (Stowell et al. 2018). Nevertheless, not many studies have focused specifically on night flight calls (Salamon et al. 2016, Lostanlen et al. 2018). Such acoustic monitoring could complement daytime avian research, especially when the field recording station is close to the bird-ringing station, as it is in our project. In this study, we present the initial results of a long-term bird audio monitoring project using automatic methods for bird detection. Passive acoustic recorders were deployed at a narrow spit between a lake and the Baltic sea in Dąbkowice, West Pomeranian Voivodeship, Poland . We recorded bird calls nightly from sunset till sunrise during the passerine autumn migration for 3 seasons. As a result, we collected over 3000 hours of recordings each season. We annotated a subset of over 50 hours, from different nights with various weather conditions. As avian flight calls are sporadic and short, we created a balanced set for training - recordings were divided into partially overlapping 500-ms clips, and we retained all clips containing calls and created about the same number of clips without bird sounds. Different signal representations were then examined (e.g. mel-spectrograms and multitaper). Afterwards, various convolutional neural networks were checked and their performance was compared using the area under the receiver operating characteristic curve (AUC) measure. Moreover, an initial attempt was made to take advantage of the transfer learning from image classification models. The results obtained by the deep learning methods are promising (AUC exceeding 80%), but higher bird detection accuracy is still needed. For a chosen bird species – Song thrush (Turdus philomelos) – we observed a correlation between calls recorded at night and birds caught in the nets during the day. This fact, as well as the promising results from the detection of calls from long-term recordings, indicate that acoustic monitoring of nocturnal birds has great potential and could be used to supplement the research of the phenomenon of seasonal bird migration.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Su ◽  
Jing Xu ◽  
Yanbin Yin ◽  
Xiongwen Quan ◽  
Han Zhang

Abstract Background Antibiotic resistance has become an increasingly serious problem in the past decades. As an alternative choice, antimicrobial peptides (AMPs) have attracted lots of attention. To identify new AMPs, machine learning methods have been commonly used. More recently, some deep learning methods have also been applied to this problem. Results In this paper, we designed a deep learning model to identify AMP sequences. We employed the embedding layer and the multi-scale convolutional network in our model. The multi-scale convolutional network, which contains multiple convolutional layers of varying filter lengths, could utilize all latent features captured by the multiple convolutional layers. To further improve the performance, we also incorporated additional information into the designed model and proposed a fusion model. Results showed that our model outperforms the state-of-the-art models on two AMP datasets and the Antimicrobial Peptide Database (APD)3 benchmark dataset. The fusion model also outperforms the state-of-the-art model on an anti-inflammatory peptides (AIPs) dataset at the accuracy. Conclusions Multi-scale convolutional network is a novel addition to existing deep neural network (DNN) models. The proposed DNN model and the modified fusion model outperform the state-of-the-art models for new AMP discovery. The source code and data are available at https://github.com/zhanglabNKU/APIN.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ying Xiong ◽  
Shuai Chen ◽  
Buzhou Tang ◽  
Qingcai Chen ◽  
Xiaolong Wang ◽  
...  

Abstract Background Biomedical named entity recognition (NER) is a fundamental task of biomedical text mining that finds the boundaries of entity mentions in biomedical text and determines their entity type. To accelerate the development of biomedical NER techniques in Spanish, the PharmaCoNER organizers launched a competition to recognize pharmacological substances, compounds, and proteins. Biomedical NER is usually recognized as a sequence labeling task, and almost all state-of-the-art sequence labeling methods ignore the meaning of different entity types. In this paper, we investigate some methods to introduce the meaning of entity types in deep learning methods for biomedical NER and apply them to the PharmaCoNER 2019 challenge. The meaning of each entity type is represented by its definition information. Material and method We investigate how to use entity definition information in the following two methods: (1) SQuad-style machine reading comprehension (MRC) methods that treat entity definition information as query and biomedical text as context and predict answer spans as entities. (2) Span-level one-pass (SOne) methods that predict entity spans of one type by one type and introduce entity type meaning, which is represented by entity definition information. All models are trained and tested on the PharmaCoNER 2019 corpus, and their performance is evaluated by strict micro-average precision, recall, and F1-score. Results Entity definition information brings improvements to both SQuad-style MRC and SOne methods by about 0.003 in micro-averaged F1-score. The SQuad-style MRC model using entity definition information as query achieves the best performance with a micro-averaged precision of 0.9225, a recall of 0.9050, and an F1-score of 0.9137, respectively. It outperforms the best model of the PharmaCoNER 2019 challenge by 0.0032 in F1-score. Compared with the state-of-the-art model without using manually-crafted features, our model obtains a 1% improvement in F1-score, which is significant. These results indicate that entity definition information is useful for deep learning methods on biomedical NER. Conclusion Our entity definition information enhanced models achieve the state-of-the-art micro-average F1 score of 0.9137, which implies that entity definition information has a positive impact on biomedical NER detection. In the future, we will explore more entity definition information from knowledge graph.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092566
Author(s):  
Dahan Wang ◽  
Sheng Luo ◽  
Li Zhao ◽  
Xiaoming Pan ◽  
Muchou Wang ◽  
...  

Fire is a fierce disaster, and smoke is the early signal of fire. Since such features as chrominance, texture, and shape of smoke are very special, a lot of methods based on these features have been developed. But these static characteristics vary widely, so there are some exceptions leading to low detection accuracy. On the other side, the motion of smoke is much more discriminating than the aforementioned features, so a time-domain neural network is proposed to extract its dynamic characteristics. This smoke recognition network has these advantages:(1) extract the spatiotemporal with the 3D filters which work on dynamic and static characteristics synchronously; (2) high accuracy, 87.31% samples being classified rightly, which is the state of the art even in a chaotic environments, and the fuzzy objects for other methods, such as haze, fog, and climbing cars, are distinguished distinctly; (3) high sensitiveness, smoke being detected averagely at the 23rd frame, which is also the state of the art, which is meaningful to alarm early fire as soon as possible; and (4) it is not been based on any hypothesis, which guarantee the method compatible. Finally, a new metric, the difference between the first frame in which smoke is detected and the first frame in which smoke happens, is proposed to compare the algorithms sensitivity in videos. The experiments confirm that the dynamic characteristics are more discriminating than the aforementioned static characteristics, and smoke recognition network is a good tool to extract compound feature.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


Sign in / Sign up

Export Citation Format

Share Document