scholarly journals Improved neural network-based adaptive tracking control for manipulators with uncertain dynamics

2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094756
Author(s):  
Dong-hui Wang ◽  
Shi-jie Zhang

In this article, a robust adaptive tracking controller is developed for robot manipulators with uncertain dynamics using radial basis function neural network. The design of tracking control systems for robot manipulators is a highly challenging task due to external disturbance and the uncertainties in their dynamics. The improved radial basis function neural network is chosen to approximate the uncertain dynamics of robot manipulators and learn the upper bound of the uncertainty. The adaptive law based on the Lyapunov stability theory is used to solve the uniform final bounded problem of the radial basis function neural network weights, which guarantees the stability and the consistent bounded tracking error of the closed-loop system. Finally, the simulation results are provided to demonstrate the practicability and effectiveness of the proposed method.

Author(s):  
Chenguang Liu ◽  
Wei Wang ◽  
Yong Guo ◽  
Shumin Chen ◽  
Aijun Li ◽  
...  

The dual-body tethered satellite system, which consists of two spacecraft connected by a single tether, is one of the most promising configurations in numerous space missions. To ensure the stability of deployment, the radial basis function neural network-based adaptive terminal sliding mode controller is proposed for the dual-body tethered satellite system with the model uncertainty and external disturbance. The terminal sliding mode controller serves as the main control framework for its properties of the strong robustness and finite-time convergence. The radial basis function neural network is adopted to approximate the model uncertainty, in which the weight vector of the radial basis function neural networks and the unknown upper bound of the external disturbance are estimated by using two adaptive laws. Finally, the Lyapunov theory and numerical simulations are used to prove the validity of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document