Unsaturated polyester nanocomposites based on poly(ethylene terephthalate) waste using different types of nanofillers

Author(s):  
Jeannette N Asaad ◽  
Salwa L Abd-El-Messieh ◽  
Nawal E Ikladious
Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 556 ◽  
Author(s):  
Nikki Poulopoulou ◽  
Nejib Kasmi ◽  
Maria Siampani ◽  
Zoi Terzopoulou ◽  
Dimitrios Bikiaris ◽  
...  

Polymers from renewable resources and especially strong engineering partially aromatic biobased polyesters are of special importance for the evolution of bioeconomy. The fabrication of polymer blends is a creative method for the production of tailor-made materials for advanced applications that are able to combine functionalities from both components. In this study, poly(alkylene furanoate)/poly(alkylene terephthalate) blends with different compositions were prepared by solution blending in a mixture of trifluoroacetic acid and chloroform. Three different types of blends were initially prepared, namely, poly(ethylene furanoate)/poly(ethylene terephthalate) (PEF/PET), poly(propylene furanoate)/poly(propylene terephthalate) (PPF/PPT), and poly(1,4-cyclohenedimethylene furanoate)/poly(1,4-cycloxehane terephthalate) (PCHDMF/PCHDMT). These blends’ miscibility characteristics were evaluated by examining the glass transition temperature of each blend. Moreover, reactive blending was utilized for the enhancement of miscibility and dynamic homogeneity and the formation of copolymers through transesterification reactions at high temperatures. PEF–PET and PPF–PPT blends formed a copolymer at relatively low reactive blending times. Finally, poly(ethylene terephthalate-co-ethylene furanoate) (PETF) random copolymers were successfully introduced as compatibilizers for the PEF/PET immiscible blends, which resulted in enhanced miscibility.


2016 ◽  
Vol 39 (5) ◽  
pp. 1682-1693 ◽  
Author(s):  
Wided Dehas ◽  
Melia Guessoum ◽  
Abdelmalek Douibi ◽  
José Antonio Jofre-Reche ◽  
José Miguel Martin-Martinez

2013 ◽  
Vol 67 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Aleksandar Marinkovic ◽  
Tijana Radoman ◽  
Enis Dzunuzovic ◽  
Jasna Dzunuzovic ◽  
Pavle Spasojevic ◽  
...  

Composites based on unsaturated polyester (UPe) resins and fumed silica AEROSIL? RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate) with dipropylene glycol (UPe1 resin) and triethylene glycol (UPe2 resin) in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay.


Sign in / Sign up

Export Citation Format

Share Document