Energy saving potential of phase change materials-enhanced building envelope considering the six Moroccan climate zones

2021 ◽  
pp. 174425912110064
Author(s):  
Amal Louanate ◽  
Rabie El Otmani ◽  
Khalid Kandoussi ◽  
M’Hamed Boutaous ◽  
Daya Abdelmajid

Phase change materials (PCMs) show a good capability in absorbing massive heat when undergoing phase change, which have great potential to be incorporated into building envelopes to enhance indoor thermal comfort by preventing heat penetration into buildings and reducing energy requirements. In this work, a deep analysis of PCM enhanced-walls model has been conducted in six representative climate regions of Morocco: El Jadida, Fez, Marrakesh, Ifrane, and Errachidia. More in detail, numerical simulations were carried out to assess the thermal behavior and energy performance of a residential building integrated with four different PCMs. The results showed that the effectiveness and selection of PCMs strongly depend on local weather where they are applied, characteristics of HVAC systems, PCM layer thickness, and position. Furthermore, with reference to each climate zone, the appropriate PCM leading to the lowest annual energy consumption was identified. The findings show that PCMs are particularly suitable for Mediterranean climates, which a promising annual energy saving of about 41% was obtained. While, the lowest value was recorded in Errachidia city reveals that the integration of PCM has little effect in desert climate zone. As for the other climates considered, values of about 28% to 31% were achieved in the studied house model.

2021 ◽  
Vol 1 (1) ◽  
pp. 7-14
Author(s):  
Qudama M. Q. Al-Yasiri ◽  
Márta Szabó

Phase change materials (PCMs) are increasingly investigated in the last years as successful in many thermal energy storage applications. In the building sector, PCMs are utilised to improve building efficiency by reducing cooling/heating loads and promoting renewable energy sources, such as solar energy. This paper shows the recent research works on integrating PCMs with building envelope for heating purposes. The main PCM categories and their main characteristics are presented, focusing on PCM types applied for building heating applications. The main methods adopted to incorporate PCMs with building elements and materials are mentioned, and the popular passive and active incorporation techniques are discussed. Lastly, the main contribution to building energy saving is discussed in terms of heating applications. The analysed studies indicated that all PCMs could improve the building energy saving in the cold climates by up to 44.16% regardless of their types and techniques. Several conclusions and recommendations are derived from the analysed studies that are believed to be a guideline for further research.


2014 ◽  
Vol 78 ◽  
pp. 192-201 ◽  
Author(s):  
Morshed Alam ◽  
Hasnat Jamil ◽  
Jay Sanjayan ◽  
John Wilson

2020 ◽  
Vol 15 (3) ◽  
pp. 434-442
Author(s):  
Michele Bottarelli ◽  
Francisco Javier González Gallero ◽  
Ismael Rodríguez Maestre ◽  
Gang Pei ◽  
Yuehong Su

Abstract Several passive cooling design techniques are known for reducing solar heat gain through building envelope in summer season. These include the use of phase change materials (PCM), which has received an increased attention over the last years, and the strategy of increasing the above-sheathing ventilation (ASV) in ventilated roofs. However, few studies combine both technologies to maximise the building resilience in hot season. The effect of including a PCM layer into a ventilated roof is numerically analysed here in two different configurations: firstly, laid on the roof deck (PCM1 case) and, secondly, suspended in the middle of the ASV channel (PCM2 case). A computational fluid dynamics model was implemented to simulate airflow and heat transfer around and through the building envelope, under 3 days of extreme hot conditions in summer with high temperatures and low wind speed. Results showed slight differences in terms of mean temperatures at the different roof layers, although temperature fluctuations at deck in the PCM1 case were smaller than half of those estimated for the benchmark case. However, PCM2 configuration achieved a daily reduction of about 10 Wh/m2 (18%) in building energy load with respect to the benchmark case, whilst PCM1 got only 4% due to the lower ventilation at night time. Therefore, a suspended PCM layer in the ASV channel would be a better measure in terms of energy performance than laid on the deck surface, although this last option significantly decreases thermal stress of the insulation layer.


2016 ◽  
Vol 26 (10) ◽  
pp. 1429-1443 ◽  
Author(s):  
Marianna E. Stamatiadou ◽  
Dimitrios I. Katsourinis ◽  
Maria A. Founti

In this study, a lightweight residential building in Greece was investigated, focusing on the summer comfort when wallboards with phase change materials (PCM) were installed in the external and internal walls. The effectiveness of the PCM wallboards installed was numerically assessed, while the energy performance of the building was examined, in order to quantify the effect of PCM in the annual cooling load needs, as a way of saving energy. Potential bigger energy savings were evaluated by defining the appropriate PCM melting temperature range and the ‘energy-conscious’ occupant behaviour (passive vs. active). Results were expressed in terms of percentage savings of cooling loads and with comparison to wall elements incorporated with plain gypsumboards instead of the PCM wallboards. The optimum phase change temperature change for the specific location was investigated by examining two-phase change transition temperatures of the PCM wallboards (PCM24 and PCM26 respectively). The use of PCM24 produced a 29% reduction of annual cooling loads, compared to 16% reduction produced by PCM26. Five scenarios were also examined, showing the behaviour of the PCM which was enhanced when a cooling system was installed. The cooling needs were lowered by an average of 25.7%, compared to the respective no-PCM scenarios.


Buildings ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 55 ◽  
Author(s):  
Cristina Cornaro ◽  
Marco Pierro ◽  
Valerio Puggioni ◽  
Daniele Roncarati

Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 248
Author(s):  
Ruey-Lung Hwang ◽  
Bi-Lian Chen ◽  
Wei-An Chen

Strategies to reduce energy consumption are presently experiencing vigorous development. Phase change materials (PCMs) are novel materials that can reduce indoor temperatures via the change in material phase. Regarding the situation in Taiwan, there is no practical utilization of PCMs in school buildings at present, especially in combination with rooftops. In this paper, we discuss the feasibility and utilization potential of installing PCMs in the rooftops of school buildings. School buildings located in northern and southern Taiwan (Taipei and Kaohsiung) were selected to analyze the energy-saving potential and optimization of indoor thermal comfort by installing PCMs with different properties in rooftops over two time periods, including the air conditioning (AC) and natural ventilation (NV) seasons. Based on the simulation results, the feasible patterns of PCM simultaneity are found to be appropriate for improved indoor comfort and energy saving during the different seasons. Specifically, the efficient phase change temperature (PCT) for different PCM thicknesses is clarified to be 29 °C. The economic thickness of PCM was clarified to be 20 mm for Taipei and Kaohsiung. Through the recommendations proposed in this study, it is expected that the PCMs may be efficiently implemented in school buildings to realize the goal of energy conservation and improve thermal comfort.


2012 ◽  
Vol 549 ◽  
pp. 572-575
Author(s):  
Huan Liu ◽  
Yan Rong Tang ◽  
Ya Fei Guo ◽  
Shi Qiang Wang ◽  
Tian Long Deng

Energy demand to ensure a comfortable environment for humans has increased worldwide, especially in the application of phase change material (PCM) for resident living. In this paper, the current applications of PCMs including solar water-heating system, solar cooker and residential building aspects were presented, and the suggestions for future works were also discussed.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


Sign in / Sign up

Export Citation Format

Share Document