Working Memory and Executive Attention: A Revisit

2018 ◽  
Vol 13 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Randall W. Engle

In this follow-up to my 2002 article on working memory capacity, fluid intelligence, and executive attention in Current Directions in Psychological Science, I review even more evidence supporting the idea that the ability to control one’s attention (i.e., executive attention) is important to working memory and fluid intelligence. I now argue that working memory tasks reflect primarily the maintenance of information, whereas fluid intelligence tests reflect primarily the ability to disengage from recently attended and no longer useful information. I also point out some conclusions in the 2002 article that now appear to be wrong.

2020 ◽  
pp. 175-211
Author(s):  
Cody A. Mashburn ◽  
Jason S. Tsukahara ◽  
Randall W. Engle

This chapter outlines the executive attention theory of higher-order cognition, which argues that individual differences in the ability to maintain information in working memory and disengage from irrelevant information is inextricably linked to variation in the ability to deploy domain-free attentional resources in a goal-directed fashion. It also summarizes recent addendums to the theory, particularly regarding the relationship between attention control, working memory capacity, and fluid intelligence. Specifically, the chapter argues that working memory capacity and fluid intelligence measures require different allocations of the same attentional resources, a fact which accounts for their strong correlation. At various points, it addresses theoretical alternatives to the executive attention theory of working memory capacity and empirical complications of the study of attention control, including difficulties deriving coherent attention control latent factors.


2015 ◽  
Vol 36 (3) ◽  
pp. 138-149 ◽  
Author(s):  
Adam Chuderski

The study examined the patterns of errors in a specially designed test of analogical reasoning. The results indicated that those patterns strongly depended on participants’ ability level that was measured by another two fluid intelligence tests. Relatively good reasoners made analogy-making errors primarily resulting from not binding a single relational element to the complete solution. This fact indicates that they properly carried out a reasoning process, but missed just one reasoning step. In contrast, poor reasoners more often chose erroneous options that missed several relational elements, but were perceptually similar to target analogs, what suggests that those reasoners did not follow the necessary rules. Moreover, the reasoning scores of poor reasoners depended more strongly on measures of working memory capacity than did scores of good reasoners. The results are interpreted in terms of several seminal theories of fluid intelligence.


2020 ◽  
Author(s):  
Jason S. Tsukahara ◽  
Randall W Engle

The locus coeruleus-norepinephrine system is uniquely situated to influence a wide-array of brain and cellular processes at all levels of brain functions. We review the literature on the locus-coeruleus-norepinephrine system in relation to fluid intelligence within the context of our executive attention theory. We discuss evidence suggesting the locus coeruleus-norepinephrine system plays an important role in the functional organization of the resting-state brain and that this can explain our finding from Tsukahara et al. (2016) that higher fluid intelligence and working memory capacity is associated with a larger baseline pupil size. However, other researchers have not been able to replicate our 2016 finding – though they only measured working memory capacity and not fluid intelligence. In a reanalysis of Tsukahara et al. (2016) we show that reduced variability on baseline pupil size will result in a higher probability of obtaining smaller and non-significant correlations with working memory capacity. In two large-scale studies, we demonstrated that reduced variability in baseline pupil size values down to minimal physiological limits can be obtained if the monitor is too bright. Additionally, fluid intelligence and working memory capacity do correlate with baseline pupil size except in the brightest lighting conditions. We also investigated the relationship of higher-order cognition to baseline pupil size within the context of our executive attention theory. Therefore, we conclude that fluid intelligence does correlate with baseline pupil size and that this is related to the functional organization of the resting-state brain through the locus coeruleus-norepinephrine system.


2014 ◽  
Vol 57 (3) ◽  
pp. 1026-1039 ◽  
Author(s):  
Sira Määttä ◽  
Marja-Leena Laakso ◽  
Asko Tolvanen ◽  
Timo Ahonen ◽  
Tuija Aro

Purpose In this article, the authors examine the developmental continuity from prelinguistic communication to kindergarten age in language and working memory capacity. Method Following work outlining 6 groups of children with different trajectories of early communication development (ECD; Määttä, Laakso, Tolvanen, Ahonen, & Aro, 2012), the authors examined their later development by psychometric assessment. Ninety-one children first assessed at ages 12–21 months completed a battery of language and working memory tests at age 5;3 (years;months). Results Two of the ECD groups previously identified as being at risk for language difficulties continued to show weaker performance at follow-up. Seventy-nine percent of the children with compromised language skills at follow-up were identified on the basis of the ECD groups, but the number of false positives was high. The 2 at-risk groups also differed significantly from the typically developing groups in the measures tapping working memory capacity. Conclusions In line with the dimensional view of language impairment, the accumulation of early delays predicted the amount of later difficulties; however, at the individual level, the prediction had rather low specificity. The results imply a strong link between language and working memory and call for further studies examining the early developmental interaction between language and memory.


2021 ◽  
Author(s):  
Alexander P. Burgoyne ◽  
Cody Mashburn ◽  
Jason S. Tsukahara ◽  
Zach Hambrick ◽  
Randall W Engle

A hallmark of intelligent behavior is rationality—the disposition and ability to think analytically to make decisions that maximize expected utility or follow the laws of probability, and therefore align with normative principles of decision making. However, the question remains as to whether rationality and intelligence are empirically distinct, as does the question of what cognitive mechanisms underlie individual differences in rationality. In a large sample of participants (N = 331), we used latent variable analyses to assess the relationship between rationality and intelligence. The results indicated that there was a common ability underpinning performance on some, but not all, rationality tests. Latent factors representing rationality and general intelligence were strongly correlated (r = .54), but their correlation fell well short of unity. Indeed, after accounting for variance in performance attributable to general intelligence, rationality measures still cohered on a latent factor. Confirmatory factor analysis indicated that rationality correlated significantly with fluid intelligence (r = .56), working memory capacity (r = .44), and attention control (r = .49). Structural equation modeling revealed that attention control fully accounted for the relationship between working memory capacity and rationality, and partially accounted for the relationship between fluid intelligence and rationality. Results are interpreted in light of the executive attention framework, which holds that attention control supports information maintenance and disengagement in service of complex cognition. We conclude by speculating about factors rationality tests may tap that other cognitive ability tests miss, and outline directions for further research.


2019 ◽  
Vol 26 (4) ◽  
pp. 1333-1339 ◽  
Author(s):  
Alexander P. Burgoyne ◽  
David Z. Hambrick ◽  
Erik M. Altmann

2018 ◽  
Vol 101 ◽  
pp. 18-36 ◽  
Author(s):  
Krishneil A. Singh ◽  
Gilles E. Gignac ◽  
Christopher R. Brydges ◽  
Ullrich K.H. Ecker

Sign in / Sign up

Export Citation Format

Share Document